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ABSTRACT
We developed a boundary integral formulation to simulate a red blood cell (RBC) squeezing through a submicron slit under
prescribed inlet and outlet pressures. The main application of this computational study is to investigate splenic filtrations of
RBCs and the corresponding in vitro mimicking microfluidic devices, during which RBCs regularly pass through inter-endothelial
slits with a width less than 1.0 µm. The diseased and old RBCs are damaged or destroyed in this mechanical filtration process. We
first derived the boundary integral equations of a RBC immersed in a confined domain with prescribed inlet and outlet pressures.
We applied a unified self-adaptive quadrature to accurately evaluate singular and nearly singular integrals, which are especially
important in this fluid-structure interaction problem with strong lubrication. A multiscale model is applied to calculate forces
from the RBC membrane, and it is coupled to boundary integral equations to simulate the fluid-structure interaction. After
multi-step verifications and validations against analytical and experimental results, we systematically investigated the effects of
pressure drop, volume-to-surface-area ratio, internal viscosity, and membrane stiffness on RBC deformation and internal stress.
We found that spectrins of RBCs could be stretched by more than 2.5 times under high hydrodynamic pressure and that the
bilayer tension could be more than 500 pN/µm, which might be large enough to open mechanosensitive channels but too small
to rupture the bilayer. On the other hand, we found that the bilayer-cytoskeletal dissociation stress is too low to induce bilayer
vesiculation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081057

I. INTRODUCTION
Numerical simulations of vesicles, elastic capsules, and

red blood cells (RBCs) in various flows are mathematically fas-
cinating due to their multiphysics fluid-structure interactions
and simplicities of flow fields and membrane structures.1–3

These simulations have also proved to be useful in applications
such as the design of microfluidic devices, study of micro-
circulation physiology4,5 and hemorheology,6 and design of
artificial capsules with controlled release of substance in phar-
maceutical, cosmetic, and food industries.1 They are math-
ematically simpler than general fluid-structure interaction
problems because the flows are usually laminar, in most cases
Stokes flows without the effect of inertia forces. Furthermore,
compared to most eukaryotic cells, elastic capsules and vesi-
cles have much simpler structures without internal organelles
so that they can be modeled accurately using continuum

theories. The RBC is an exception in eukaryotic cells and is
similar to an elastic capsule. However, their numerical simu-
lations are still challenging due to the elastic interfaces with
strain-dependent and rate-dependent in-plane and bending
properties. The existing commercial simulation packages still
cannot capture the fluid-structure interaction of these sharp
and complicated 3D interfaces accurately. Development of
efficient, accurate, and robust numerical algorithms to sim-
ulate cells, elastic capsules, and vesicles in flows might have
significant impacts on the future biomedical industry related
to lab-on-a-chip technologies and artificial capsules. Com-
putational modeling can provide important information such
as stress distribution on the capsules and vesicles when they
pass through microfluidic devices and deformation of RBCs in
microcirculation, which are extremely difficult to measure in
experiments.
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There are three major groups of numerical methods in the
existing literature to study motion and deformation of elas-
tic capsules and RBCs in flows.1–3 In the first group, bound-
ary integral equations are used to represent the Stokes flow
and coupled to the membrane,7–9 which is usually modeled as
meshes or spectral elements10 either by enforcing the mem-
brane equilibrium equation directly at the local grid points8 or
by the finite element method based on the principle of virtual
work.7,11 This type of method has been known to be very pre-
cise in various studies of simple shear flow and plane hyper-
bolic flow.1,2 In the second group of the immerse-boundary
type methods, the fluid domain is solved using either finite
difference methods,12–14 finite element methods,15 finite vol-
ume methods, or lattice Boltzmann methods,16 and the cap-
sule membrane is solved using continuum methods such as
the finite element method. The forces from capsule membrane
nodes are distributed to the fluid domain as Dirac delta func-
tions, which are approximated by smooth functions sharply
varying over a few fixed grid cells. Although this approxima-
tion may decrease the accuracy of capturing the sharp inter-
faces, it enables these methods to include the inertial forces
by solving the Navier-Stokes equation, which is missing in
boundary integral formulations of Stokes flows. In the third
group, particle methods such as dissipative particle dynamics
(DPD),17,18 multi-particle collision dynamics,19 and smoothed
particle hydrodynamics (SPH)20 are used. Bounce-back algo-
rithms and repulsive interactions are employed to enforce the
boundary conditions on the interfaces.17 Capsule and RBC
membranes are modeled as triangular networks of particles
with bond, angle, and dihedral interactions.21 In addition to
these three groups, phase-field methods22 and the arbitrary
Lagrangian Eulerian (ALE) method using the finite element
method23,24 are used as well to study capsules and vesicles
in flows.

Recently the mechanical filtration of RBCs in the spleen
and the corresponding in vitro microfluidic studies received
a lot of attention.25–32 Because the inter-endothelial slit in
the spleen is the place where RBCs experience the most
severe deformation, slight changes of RBC structures can
lead to huge deformation differences so that it provides an
ideal case to study aging and diseased RBCs.33 Furthermore,
splenic filtration of RBCs plays an important role in dis-
eases such as malaria,34 sickle cell disease,35 and heredi-
tary spherocytosis.28,35 Simulations of RBCs passing through
splenic slits were explored by various computational methods.
Freund applied the boundary integral method to simulate
a RBC passing through an infinitely long slit with peri-
odic boundary conditions and constant far field velocity.30

Salehyar et al. applied the boundary integral method with
a multiscale model to study the transit time and bilayer-
cytoskeletal separation of RBCs during splenic passage.31,32,36

Using DPD, we also studied this process and explored the
cause of linear volume-area relationship of RBC populations.25

Recently, Li et al.27 applied the coarse-grained molecular
dynamics (CGMD) method to investigate RBCs with hered-
itary disorders in the splenic filtration process. In addi-
tion, experimental tools including microfluidic slit devices,26

microsphere filtration systems,28,34,37 and ex vivo spleen

perfusion29,38 were applied to study the retention rates and
dynamics of healthy and diseased RBCs passing through
splenic slits. These experimental results provide important
data for model validations.

Among these various numerical methods to simulate elas-
tic capsules in flows, the boundary integral method is a highly
competitive approach.1,2 It has high accuracy due to its direct
representation of sharp interfaces and its usage of analytical
fundamental solutions in terms of Green’s functions. It is also
highly efficient and robust due to its lack of domain meshes.
But there are still several challenges to overcome for the
boundary integral simulations of elastic capsules in microflu-
idics and microcirculations, especially when the channels are
extremely narrow. First, an elastic capsule in a channel flow
has been studied using the boundary integral method, but in
most cases, only for the Dirichlet boundary condition of a
prescribed inflow velocity or flow rate.30,31,39–42 For example,
Pozrikidis developed a three-dimensional approach to study
a capsule in a tube flow, but a constant flow rate is assumed
and the capsule is assumed to be far away from the wall and
the inlet/outlet.39 In many microfluidic devices, it is easier to
control the pressure drop instead of the flow rate. Even in
flow rate controlling devices, the pressure drop P as shown
in Fig. 1 is usually constant for local individual channels. More
importantly, it is most likely that the pressure drop is constant
across the splenic slits in the in vivo condition instead of the
flow rate. Barthes-Biesel and co-workers investigated the pas-
sage of an initially spherical capsule through an axisymmetric
hyperbolic constriction under either constant pressure drop
or constant flow rate conditions.43–45 Therefore, there is an
urgent need to consider the general Neumann boundary con-
ditions of prescribed inlet and outlet pressures appropriately
in the boundary integral formulation of capsules in three-
dimensional flows. Second, the microfluidic channels or the
confined spaces in the microcirculation are extremely narrow
in many applications, even less than 1 µm as shown in Fig. 1 so
that strong lubrication between the capsules and the channel
walls can happen, which requires special numerical algorithms
to accurately calculate the nearly singular integrals between
the capsule and the walls. Our current study in this paper will

FIG. 1. Sketch of the boundary value problem and boundary conditions of an elas-
tic capsule squeezing through a narrow channel. P is the pressure applied on the
inlet, and the pressure on the outlet is zero. The fluid viscosity η1 outside the
capsule (Ωe) might be different from the fluid viscosity η2 inside the capsule (Ωi ).
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address these important issues in boundary integral simula-
tions of elastic capsules and vesicles in narrow channels in
microfluidics and microcirculation.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
FORMULATION

Consider the boundary value problem of surrounding flow
fields of an elastic capsule such as a red blood cell (RBC)
immersed in a three-dimensional confined Stokes flow, as
shown in Fig. 1. The flow can be described by the Stokes
equation and the continuity equation as

η∇2u = ∇p, (1)

∇ · u = 0, (2)

where u is the flow velocity, η is the dynamic viscosity (η = η1
in Ωe and η = η2 in Ωi), and ∇p is the pressure gradient. We
denote the elastic capsule interface as Γb, the wall Dirichlet
boundary as ΓD, and the inlet/outlet Neumann boundary as
ΓN. On ΓD, the flow velocity u is prescribed. It is zero for fixed
walls, but can be specific values for prescribed velocities or
flow rates. The traction on ΓD is unknown and needs to be
solved. On ΓN, the traction including pressure is prescribed,
but the velocity on ΓN is unknown and needs to be solved. On
Γb, the traction discontinuity is calculated from the membrane
mechanics based on the membrane deformation such as using
the finite element method, but the velocity is unknown and
needs to be solved in the boundary integral simulations.

In most existing boundary integral simulations of elas-
tic capsules in confined spaces, only Dirichlet boundary
conditions on the inlet/outlet are considered,30,31,39–42 or
Neumann boundaries are usually replaced by Dirichlet bound-
aries with prescribed velocities. For example, Pozrikidis39

assumed a constant flow rate on the tube inlet/outlet and
Barthes-Biesel43,44 used the computed transient additional
pressure drop due to the capsule to convert a constant pres-
sure problem to a prescribed flow rate problem. Therefore, a
boundary integral formulation with Neumann boundary con-
ditions on the inlet/outlet would be greatly helpful. Further-
more, in most studies, the capsules are assumed to be far away
from the channel walls.39 But in many applications, the slits in
the microfluidics and microcirculation are extremely narrow,
even less than 1 µm, such as the splenic filtration of RBCs and
extravasation of cancer cells through inter-endothelial slits of
blood vessel walls. Therefore, special numerical algorithms are
required to accurately capture the strong lubrication between
the capsules and the channel walls. These critical issues will
be addressed in Secs. III and IV.

III. BOUNDARY INTEGRAL FORMULATION OF ELASTIC
CAPSULES IN CONFINED SPACES WITH NEUMANN
AND DIRICHLET BOUNDARY CONDITIONS
A. Boundary integral representation of the velocity
field in the fluid domain

By applying the Lorentz reciprocal theorem,8 the bound-
ary integral representation of the velocity for a point x0 in

the domain Ωe between the bilayer Γb (interface), the wall
ΓD (Dirichlet boundary), and the inlet/outlet ΓN (Neumann
boundary) is given as

uj(x0) = −
1

8πη1

∫
Γb
∆fi(x)Gij(x, x0)dΓ(x)

+
1 − λ
8π

∫
Γb
ui(x)Tijk(x, x0)nk(x)dΓ(x)

−
1

8πη1

∫
ΓD

f (D)
i (x)Gij(x, x0)dΓ(x)

+
1

8π

∫
ΓD

ui(x)Tijk(x, x0)nk(x)dΓ(x)

−
1

8πη1

∫
ΓN

f (N)
i (x)Gij(x, x0)dΓ(x)

+
1

8π

∫
ΓN

ui(x)Tijk(x, x0)nk(x)dΓ(x), (3)

where the viscosity ratio λ ≡ η2/η1. η1 is the fluid viscosity
in the domain Ωe, and η2 is the fluid viscosity in the domain
Ωi. ∆f is the discontinuity of the surface traction across the
bilayer interface Γb. f (D) is the traction on the wall ΓD. f (N) is
the traction on the inlet/outlet ΓN, which can be prescribed
as inflow and outflow pressures if no tangential traction. The
unit normal vector n points toward the fluid domain Ωe. The
velocity and stress Green’s functions of free space Stokes flow
are given by

Gij(x, x0) =
δij

|x − x0 |
+

(xi − x0i )(xj − x0j )

|x − x0 |
3

, (4)

Tijk(x, x0) = −6
(xi − x0i )(xj − x0j )(xk − x0k )

|x − x0 |
5

, (5)

where δij is Kronecker’s delta. Equations (4) and (5) are funda-
mental solutions of the Stokes equation [Eq. (1)] and the con-
tinuity equation [Eq. (2)] under a point force in the 3D infinite
free space domain.

The Dirichlet boundary condition on the wall and the
Neumann boundary condition on the inlet/outlet are speci-
fied as

u = ū on Γ
D,

f (N)
= f̄ on Γ

N. (6)

B. Boundary integral equations of the velocities
on the bilayer (interface), the inlet/outlet (Neumann
boundaries), and the wall (Dirichlet boundaries)

Taking the limit as the point x0 approaches the bilayer Γb

from external side, since the bilayer is a Lyapunov surface, i.e.,
it has a continuously varying normal vector, and the velocity
over the bilayer varies in a continuous manner, we have

lim
x0→ Γ

b

∫
Γb
ui(x)Tijk(x, x0)nk(x)dΓ(x) = 4πuj(x0)

+
∫ PV

Γb
ui(x)Tijk(x, x0)nk(x)dΓ(x), (7)
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where the superscript PV denotes the principal value integral
computed by placing the evaluation point x0 precisely on the
interface Γb.

Substituting Eq. (7) into Eq. (3) and applying the boundary
conditions of Eq. (6), we get the boundary integral equation of
the velocity on the bilayer

uj(x0) = −
1

4πη1(1 + λ)

∫
Γb
∆fi(x)Gij(x, x0)dΓ(x)

+
1 − λ

4π(1 + λ)

∫ PV

Γb
ui(x)Tijk(x, x0)nk(x)dΓ(x)

−
1

4πη1(1 + λ)

∫
ΓD

f (D)
i (x)Gij(x, x0)dΓ(x)

+
1

4π(1 + λ)

∫
ΓD

ūi(x)Tijk(x, x0)nk(x)dΓ(x)

−
1

4πη1(1 + λ)

∫
ΓN

f̄i(x)Gij(x, x0)dΓ(x)

+
1

4π(1 + λ)

∫
ΓN

ui(x)Tijk(x, x0)nk(x)dΓ(x). (8)

Now taking the limit as the point x0 approaches the
inlet/outlet ΓN, by using the principal value integral on
the inlet/outlet and applying the boundary conditions, sim-
ilarly, the boundary integral equation of the velocity on the
inlet/outlet can be written as

uj(x0) = −
1

4πη1

∫
Γb
∆fi(x)Gij(x, x0)dΓ(x)

+
1 − λ
4π

∫
Γb
ui(x)Tijk(x, x0)nk(x)dΓ(x)

−
1

4πη1

∫
ΓD

f (D)
i (x)Gij(x, x0)dΓ(x)

+
1

4π

∫
ΓD

ūi(x)Tijk(x, x0)nk(x)dΓ(x)

−
1

4πη1

∫
ΓN

f̄i(x)Gij(x, x0)dΓ(x)

+
1

4π

∫ PV

ΓN
ui(x)Tijk(x, x0)nk(x)dΓ(x). (9)

Similarly, when the point x0 lies on the wall ΓD, the
boundary integral equation of the velocity on the wall is

ūj(x0) = −
1

4πη1

∫
Γb
∆fi(x)Gij(x, x0)dΓ(x)

+
1 − λ
4π

∫
Γb
ui(x)Tijk(x, x0)nk(x)dΓ(x)

−
1

4πη1

∫
ΓD

f (D)
i (x)Gij(x, x0)dΓ(x)

+
1

4π

∫ PV

ΓD
ūi(x)Tijk(x, x0)nk(x)dΓ(x)

−
1

4πη1

∫
ΓN

f̄i(x)Gij(x, x0)dΓ(x)

+
1

4π

∫
ΓN

ui(x)Tijk(x, x0)nk(x)dΓ(x). (10)

We need to solve Eqs. (8)–(10) together for the unknown
velocity u on the bilayer interface, the unknown velocity u on
the inlet/outlet, and the unknown traction f (D) on the wall.
The detailed procedure and algorithm to solve these coupled
equations are given in Appendix A. The differences between
our current formulation and existing formulations are sum-
marized in Table I. The major difference is that we considered
the combined Neumann and Dirichlet boundary conditions
with prescribed pressure and velocity, while in most existing
studies, only Dirichlet boundary conditions with prescribed
velocity or flow rate were considered.30,39–42

IV. IMPORTANT NUMERICAL ISSUES
OF THE BOUNDARY INTEGRAL FORMULATION
A. Singular and nearly singular integrals

To simulate a RBC squeezing through a submicron slit, it
is critical to accurately evaluate the singular and nearly sin-
gular integrals to capture the strong hydrodynamic interac-
tions between the cell and the channel boundaries. First, in
the boundary integral equations of Eqs. (8)–(10), both single-
layer and double-layer potential terms are singular integrals
when the point x0 lies on the bilayer, inlet/outlet, and wall,
respectively. Numerically, the contributions of connected ele-
ments to the current collocation node are singular functions,

TABLE I. Comparison of boundary integral equation (BIE) studies of RBCs/capsules in confined spaces. In addition, the membrane equilibrium is enforced by finite elements
(FE) based on the principal of virtual work in the current study, while it is enforced directly at the local grid points in the other four studies listed.

BIE studies Boundary conditions studied Nearly singularity integration Discretization methods

Current study Prescribed both pressure and
velocity

Third-degree polynomial self-
adaptive quadrature

Bilinear quadrilateral elements
(the same interpolation in FE)

Pozrikidis39 Prescribed velocity The cell is far away from walls Six node triangular elements

Freund et al.10,30 Periodic boundary condition
with prescribed velocity

Special quadrature in polar
coordinates

Spectral spherical harmonics

Leyrat-Maurin et al.43,44 Prescribed pressure or velocity
in axisymmetric cases

Adaptive meshing in the region
of high curvature

Axisymmetric line elements

Dimitrakopoulos et al.40–42 Prescribed velocity The cell is far away from walls Spectral quadrilateral elements
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which approach infinity at the collocation node so that spe-
cially designed quadratures are needed. Second, when the cell
passes through the slit, the cell membrane gets extremely
close to the wall (∼50 nm) so that accurate evaluation of the
nearly singular integrals is crucial. Third, the cell may fold
under some conditions so that the cell surface may contact
itself. Therefore, a nearly singular integral is necessary for the
stability and accuracy of successful simulations. In our sim-
ulations, we applied a unified self-adaptive quadrature46 to
calculate all the singular and nearly singular integrals, which
is not only very effective but also useful in simplifying the
numerical implementations.

For a nearly singular integral, we first define a cutoff dis-
tance between the collocation node and the element to inte-
grate. For elements whose distances to the current collocation
node are within the cutoff distance, a third-degree polynomial
coordinate transformation46 is employed. In one dimension,
such a transformation can be written as

I =
∫ 1

−1
f(x)dx =

∫ 1

−1
f(aξ3 + bξ2 + cξ + d)J(ξ)dξ , (11)

where

J = 3aξ2 + 2bξ + c, (12)

a = (1 − r̄)/(1 + 3ξ̄2), (13)

b = −3(1 − r̄)ξ̄/(1 + 3ξ̄2), (14)

c = (r̄ + 3ξ̄2)/(1 + 3ξ̄2), (15)

d = −b, (16)

where f is the function to be integrated, i.e., Green’s func-
tion times the shape function in our case. ξ̄ is the parametric
coordinate of the projected collocation node. r̄ is a free param-
eter which can be taken as a function of the normal distance
from the current node to the element. In the two-dimensional
case, the transformation in Eq. (11) is applied to both directions
(ξ and η).

The key of this transformation is to self-adjust the dis-
tribution of integration points. As shown in Fig. 2, the red

FIG. 2. Distributions of integration points in a quadrilateral element. (a) Regular
Gaussian quadrature. (b) Self-adaptive Gaussian quadrature. The red dot repre-
sents the collocation node where the velocity is evaluated, such as a node on the
RBC bilayer or x0 in Eq. (8). The black dots represent the integration points. The
black quadrilateral represents the element to integrate.

dots represent the collocation nodes whose velocities are
to be calculated, such as nodes on the bilayer. The black
dots represent the integration points within an element. The
Green’s functions of Eqs. (4) and (5) go to infinity when the
red dots approach the element, which causes inaccurate cal-
culation of the boundary integral equations using regular inte-
gration algorithms, such as the regular Gaussian quadrature.
Figure 2(a) illustrates the integration point distribution for the
regular Gaussian quadrature. Figure 2(b) illustrates the inte-
gration point distribution for this self-adaptive quadrature.
Compared with the regular Gaussian quadrature, where inte-
gration points are distributed uniformly no matter where the
collocation node is located, this transformation leads to the
lumping of integration points around the collocation nodes,
which significantly enhances the computation accuracy with-
out increasing integration points.

If r̄ = 0, Eq. (11) degenerates into the coordinate transfor-
mation for a singular integral, which is the case when the red
dot locates precisely on the element, e.g., a node of the ele-
ment. In boundary integral equations, the single-layer poten-
tial kernel has a weak singularity of 1/r (r = |x − x0 |) as
shown in Eq. (4), while the double-layer potential kernel has a
singularity of 1/r2 (r = |x − x0 |) as shown in Eq. (5). These
singularities can be accurately evaluated by this self-adaptive
quadrature.46 Although it is well known that special quadra-
tures are required to calculate nearly singular integrals,10,47

they are usually used in high-order spectral representations.
But this self-adaptive quadrature can accurately work for our
low-order bilinear quadrilateral elements and can work seam-
less with bilinear shell elements in finite elements. We will
demonstrate its accuracy in Sec. VI B.

Another advantage of this algorithm is that it works for
all three cases: (1) the red dot is within the element (singular
integral); (2) the red dot is away from the element, but its pro-
jection point is within the element (nearly singular integral);
(3) the red dot is away from the element, and its projection
point is outside the element, but it is still within the cut-off
distance (nearly singular integral). This not only simplifies the
numerical implementation but also ensures the smoothness of
the solution when the red dot moves across element edges.

B. Cell-wall interaction
Besides the singular and nearly singular integrals dis-

cussed above, we also applied an interaction force between
the cell and the wall to capture the repulsive force due to
the steric effect of the glycocalyx layer on the RBC surface
and associated electrostatic interactions. The thickness of the
glycocalyx layer on RBCs is measured as 5–10 nm,48,49 and
it is much thicker on endothelial cells.50 The glycocalyx lay-
ers are negatively charged due to its anionic oligosaccharides,
and the typical polydimethylsiloxane (PDMS) surfaces of the
microfluidic channel walls used in the experiments are slightly
negatively charged as well. It was estimated that this repulsive
force would rise significantly when the cell-wall distance h is
smaller than 35 nm.32 We applied a harmonic repulsive force
between the cell node and the wall surface. We studied the
effect of h by varying it from 35 nm to 100 nm and found that
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its influence on our results is small as long as it is within this
range. This is not a numerical ad-hoc algorithm, as the extra
physics must be taken into account to describe the interac-
tions at the small length scale between the cell and the wall
besides hydrodynamic interactions.

In addition, the corner singularities in the computation
domain can cause significant error in boundary integral sim-
ulations.51 The Green’s functions of Eqs. (4) and (5) diverge at
sharp corners, which leads to inaccurate calculation of bound-
ary integral equations. Following Pozrikidis’ approach,51 we
enhanced the spatial resolution via mesh optimization in the
vicinity of the corners. The size of the elements increases in
a geometric fashion with respect to their distances to a cor-
ner. The details and verifications about corner singularities are
described in Appendix C.

V. MULTISCALE MODEL OF THE RED BLOOD
CELL MEMBRANE

The mechanical responses of a RBC membrane involve
mechanics at different length scales, ranging from dynamics
in the whole cell level (in the micron meter scale) down to the
local dynamics of the spectrin and its tension-induced struc-
tural remodeling such as domain unfolding and dissociations
of spectrins in the protein level (in the nanometer scale). To
capture these phenomena together, we developed a multiscale
approach including three models at different length scales and
connect them by a sequential information-passing multiscale
algorithm.11,52

The detailed aspects of the three-level multiscale mod-
els and their information-passing approach are described in
Appendix B. As the current study focuses on the boundary
integral formulation, we used the default parameters for our
multiscale model as we used in our previous studies,18,53

which are listed in Tables IV and V in Appendix B, unless spec-
ified. The differences between our three-level multiscale RBC
model and existing RBC models are summarized in Table II.

This multiscale RBC model has been verified in previ-
ous work against various quasi-static and dynamic exper-
iments,52,53 such as cell stretching by optical tweezer,
micropipette aspiration, and RBC deformation in shear flows

and tube flows. To couple the boundary integral simulation
with the finite element simulation in the Level III model to
evaluate the fluid-structure interaction, we used the same
bilinear quadrilateral surface mesh for the boundary inte-
gral simulation and the finite element simulation (bilinear
quadrilateral continuum-based shell elements54) of the lipid
bilayer. The traction calculated from the finite element simu-
lation is passed to the boundary integral simulation, and the
velocity calculated from the boundary integral simulation is
used in the finite element simulation to advance the posi-
tions of the bilayer nodes using the explicit Euler integration
in time.54 This staggered coupling was verified in previous
work by studying motions of RBCs in shear flows and tube
flows,11,18,53,55 such as tumbling, tank-treading, and swing-
ing motions of RBCs in ektacytometry.56,57 In addition, we
used independent meshes for the walls and inlet/outlet in the
boundary integral formulation, which are fixed spatially.

VI. VERIFICATION OF NUMERICAL ISSUES
AND VALIDATION OF THE COUPLED FINITE ELEMENT
AND BOUNDARY INTEGRAL SIMULATIONS

We will first verify our boundary integral formulation step
by step to make sure that (1) the Neumann boundary condi-
tions are enforced appropriately and (2) the effects of singu-
lar and nearly singular integrals related to strong lubrication
interactions are accurately captured. Then we will validate the
fluid-structure interaction simulation against the experiment
of a RBC squeezing through a submicron slit in a microfluidic
device.26

A. Verification of the boundary integral formulation
with prescribed pressure

To verify our boundary integral formulation with pre-
scribed inlet and outlet pressures, we applied it to solve a
Poiseuille flow. The computational domain is a cylindrical tube
with a circular cross section. The length of the tube is 30 µm,
and the radius of the cross section is 6 µm. On the inlet, a
constant pressure of 150 Pa is applied, and the pressure on
the outlet is set to be zero. Figure 3 shows the velocity profile.

TABLE II. Comparison of RBC membrane models. WLC: worm-like chain. CGMD: coarse-grained molecular dynamics.

RBC membrane models Main characteristics Advantages and disadvantages

Current three-level model (Refs. 52, 11, and 58) Spanning from spectrin domains, 3D
junctional complexes to the whole cell

Molecular-detailed, fast due to sequential
passing of pre-calculated information

Empirical constitutive laws (Refs. 59, 60, etc.) Based on classical thermodynamics and
deformation invariants

No molecular details, analytical solutions
available (e.g., micropipette), simple, fast

WLC network (Refs. 21, 61, 62, 17, 18, 63, etc.) Microstructures of the network, WLC
model for spectrins but no domain details
(the initial shear and area moduli of WLC
networks were derived in Ref. 61)

Whole-cell model with individual spec-
trins modeled, expensive if a full model is
used without coarse-graining

CGMD model (Refs. 64, 65, 66, 67, etc.) Spectrin domains as beads, one-particle-
thick bilayer model

Spectrin dissociation, bilayer budding,
expensive

Low-order models (Ref. 68) Coarse-graining, 10 beads per cell Low-resolution, very fast
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FIG. 3. Verification by the predicted velocity profile of a Poiseuille flow. Ddiui is the
contribution from the double-layer potential on the inlet/outlet in Eq. (A19).

The black curve is the analytical solution, and the red curve
obtained from our simulation agrees well with the analytical
solution.

To estimate the contribution from the velocity dis-
tribution on the inlet/outlet, we removed the double-
layer potential on the inlet/outlet, i.e., the last term

1
8π ∫ΓN ui(x)Tijk(x, x0)nk(x)dΓ(x) in Eq. (3) or its matrix form of
Ddiui in Eq. (A19). The corresponding result is given in Fig. 3
by the blue curve, which shows that this term can contribute
more than 20% to the total velocity.

B. Verification of nearly singular integrals
To illustrate the influence of nearly singular integrals,

we applied our numerical method to solve the velocity field
induced by the squeezing motion of two rigid spheres in a
viscous fluid at rest at infinity.9,69 The two spheres have the
same radius of 3 µm. The gap between them is 0.1 µm. We
choose a Cartesian coordinate system in which the centers of
the two spheres are (0, 3.05, 0) and (0, −3.05, 0), respectively.
One sphere is stationary, and the other one is approaching to
it with a constant velocity of −10 µm/s parallel to their line of
centers.

An asymptotic analytical solution of the flow velocity9,69

is available for this problem. Since the flow is axisymmetric,
the velocity can be given in a cylindrical coordinate system as

vr = U
1
r
∂ψ

∂z
,

vz = −U
1
r
∂ψ

∂r
,

vθ = 0,

(17)

where U is the constant velocity of the moving sphere, which
is −10 µm/s here. ψ is the Stokes stream function, and its

FIG. 4. Velocity in the x direction (y = 0) on the symmetric plane between two
spheres.

asymptotic form is

ψ(r, z) = a2ε
[
ψ0(r, z) + εψ1(r, z) + ε2ψ2(r, z)

]
+ O(ε4), (18)

where a is the radius of the two spheres, namely, 3 µm here.
ε is the ratio of the gap width to the sphere radius. The detailed
expressions of ψ0, ψ1, and ψ2 are given in Jeffrey’s paper69 and
Kim and Karrila’s book.9

In Fig. 4, we plotted the velocity profile in the x direction
(y = 0) on a symmetric plane. The black curve is the asymp-
totic analytical solution from Eq. (17). The red curve is obtained
by evaluating the boundary integral equations using the self-
adaptive quadrature discussed in Sec. IV A. By contrast, the
blue curve is the result using the regular Gaussian quadra-
ture. It can be clearly seen that the self-adaptive quadrature
accurately captures the strong hydrodynamic interaction
between the two spheres, while the regular Gaussian quadra-
ture performs much worse due to the inaccurate calculation
of the nearly singular integrals.

C. Validation of cell deformation against experiments
To validate our coupled numerical methods including the

boundary integral method, the multiscale RBC model, and
their fluid-structure interaction, we simulated the process of a
RBC squeezing through a submicron slit and compared the cell
deformations with a submicron slit experiment carried out by
our collaborator Gambhire et al.70 (see Acknowledgments). As
noted in Sec. V, the multiscale RBC model has been validated
against various quasi-static and dynamic experiments.52,53

Snapshots of the cell deformations at different time steps
during the passage in the experiment and our simulation are
shown in Figs. 5(a) and 5(b), respectively. The computational
domain in our simulation is built based on the geometry of
the microfluidic device used in the experiment. According
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FIG. 5. Validation by simulating the submicron slit experiments on healthy RBCs. The length of this artificial slit is 1.93 µm, the width is 0.84 µm, and the depth is 5.0 µm. The
pressure drop is 831 Pa in both the experiment and our simulation. (a) Cell deformations in the experiment at time steps t = 0 s, t = 0.0016 s, t = 0.0076 s, t = 0.0126 s, and
t = 0.0176 s [courtesy of Anne Charrier, Annie Viallat, and Emmanuele Helfer (see Ref. 70)]. (b) Cell deformations in the numerical simulation at time steps
t = 0 s, t = 0.0012 s, t = 0.0072 s, t = 0.0124 s, and t = 0.0156 s.

to the experimental measurements, the length of this artifi-
cial slit is 1.93 µm, the width is 0.84 µm, and the depth is
5.0 µm.26 It is very close to the dimensions of inter-endothelial
slits in the human spleen.38 The boundary conditions in our
simulation are consistent with the experiment. The pressure
drop between the inlet and outlet is 831 Pa. The viscosity ratio
between the fluids inside and outside the cell membrane is 5.0.
By comparing Figs. 5(a) and 5(b), we can clearly see that the cell
deformations at different time steps in our simulation resem-
ble those in the experiment. To the best of our knowledge,
this is the first experimental validation of numerical simula-
tions related to splenic filtration of RBCs, while no experi-
mental validation has been done in the existing computational
studies.25,27,30–32,36

For simulations conducted in this study, 3052 four-node
quadrilateral elements with 3054 nodes are used to discretize
the lipid bilayer, 2551 four-node quadrilateral elements with
2595 nodes are used to discretize the channel wall, and 224
four-node quadrilateral elements with 270 nodes are used to
discretize the inlet and outlet. The code is parallelized using
Message Passing Interface (MPI). It took 16 h to run using
8 cores of Intel Xeon E5-2680 v3 at 2.50 GHz CPUs with
the viscosity ratio of 5.0. For the cases with equal viscosities,
the computational time is reduced by several folds. The same
numbers of elements are used in the following parametric
study simulations. Table III is a summary of the computational
costs for the boundary integral simulation and the finite ele-
ment simulation. The most expensive part is the iterations for
λ , 1 in the boundary integral simulations.

TABLE III. Relative computational cost at different viscosity ratios with 8 core MPI
parallelization.

Viscosity ratio FEM time (%) BEM time (%) Number of iterations

1.0 34 66 1
3.0 26 74 5-11
5.0 17 83 9-20

VII. RESULT
After the above verifications and validations, we carried

out parametric studies of RBCs passing through submicron
slits. We examined the transit time, bilayer tension, cytoskele-
ton shear deformation, and bilayer-cytoskeletal interaction
stress among various outputs. The transit time tT is defined as
tT = t2 − t1, where t1 is the time when any node of the cell mesh
first enters the slit and t2 is the time when the cell completely
leaves the slit. The prolonged transit time of a RBC may signifi-
cantly increase the chance of its capture by macrophages. The
bilayer tension is an important measurement which deter-
mines the opening of the mechanosensitive channels such as
PIEZO171,72 in RBCs and the bilayer rupture.73 The cytoskele-
tal deformation is measured by the maximum shear ratio
λ1/λ2, where λ1 and λ2 are the principal stretches which define
the in-plane deformation. The cytoskeletal deformation can
be used to evaluate whether spectrin unfolding and spec-
trin dimer dissociation may occur.58 The bilayer-cytoskeletal
interaction force plays a major role in bilayer-cytoskeletal
detachment, leading to bilayer budding and surface area loss,
which is critical in hereditary spherocytosis (HS), hereditary
elliptocytosis (HE), and RBC aging.18

We used a standard case with a pressure drop of 400 Pa,
cell volume of 93.88 µm3, cell surface area of 146.56 µm2,
viscosity ratio of 1.0, and initial cytoskeleton shear modu-
lus of 7.5 pN/µm. Then we studied the effects of the pres-
sure drop, volume-to-surface ratio, viscosity ratio, and initial
cytoskeleton shear modulus.

A. Effect of pressure drop
We studied five cases with pressure drops of 100 Pa,

200 Pa, 400 Pa, 600 Pa, and 800 Pa. The pressure drop across
individual slits was estimated between 150 Pa and 1000 Pa
in the existing experiments for the slits with a depth of
5 µm.26 Figure 6(a) shows the maximum shear ratio λ1/λ2 and
the transit time under different pressure drops. Figure 6(b)
shows the maximum bilayer tension and the maximum
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FIG. 6. Effect of the pressure drop. (a) The maximum cytoskeleton shear defor-
mation and transit time. (b) The maximum bilayer tension and the maximum
bilayer-cytoskeletal dissociation stress.

bilayer-cytoskeletal dissociation stress. Higher pressure drop
causes higher velocity and stress in the slit, which leads to
larger cell deformation. When the pressure drop is increased
from 100 Pa to 800 Pa, the maximum shear ratio λ1/λ2
increases rapidly from 5.0 to 8.5 so that the spectrin could be
stretched by more than 2.5 times under high hydrodynamic
pressure. The cell also passes through the slit much faster.
When the pressure drop is 800 Pa, it only takes one fifth of
the time for the cell to pass through compared with the pres-
sure drop of 100 Pa. It means that the chance for the cell to
get trapped in the slit is much higher when the pressure drop
is below 100 Pa. The maximum bilayer tension increases with
increased pressure drop. It reaches 550 pN/µm under the
pressure drop of 800 Pa. It could be large enough to open the
mechanosensitive channels and may further change the cell
volume, as the critical tension for opening the mechanosen-
sitive channels is estimated as 680 pN/µm.72 But it is still
too small to rupture the bilayer, as the bilayer lysis tension is
estimated as 10 000 pN/µm.73 On the other hand, the change

of bilayer tension is relatively small when the pressure drop
varies from 200 Pa to 400 Pa. We examined this in detail and
found that at 200 Pa, the maximum tension happens dur-
ing the exit of the slit, but for pressure drops of 100 Pa and
400 Pa, the maximum tension occurs when the cell is inside
the slit. The bilayer-cytoskeletal dissociation stress increases
at higher pressure and reaches 150 Pa when the pressure drop
is 800 Pa, which is still smaller than the critical stress to break
the bilayer-cytoskeletal bonds (>1000 Pa32).

B. Effect of volume-to-surface ratio
We studied five cases with cell surface areas of

125.368 µm2, 129.077 µm2, 133.903 µm2, 139.758 µm2, and
143.048 µm2. We kept the cell volume as a constant of
93.880 µm3 and changed the cell shape by scaling the x and y
directions by a factor of s and scaling the z direction by a factor
of 1/s2. The maximum shear ratio λ1/λ2 and the transit time

FIG. 7. Effect of the volume-to-surface-area ratio. The volume is kept as a constant
of 93.88 µm3 while the surface area is varied. (a) The maximum cytoskeleton
shear deformation and transit time. (b) The maximum bilayer tension and the
maximum bilayer-cytoskeletal dissociation stress.
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are shown in Fig. 7(a). The maximum bilayer tension and the
maximum bilayer-cytoskeletal dissociation stress are shown
in Fig. 7(b). The transit time decreases when the cell surface
area is increased, which is consistent with the experimental
and clinical observations. When RBCs lose the surface area
such as aged RBCs and HS/HE RBCs, it may take longer time
for them to pass through the splenic slit, leading to a higher
chance of clearance by macrophages. Both the shear defor-
mation and bilayer tension decrease when the cell surface
area is increased. The maximum bilayer tension of RBCs with
a small surface area of 125 µm2 is close to 600 pN/µm, which
may also cause the mechanosensitive channels to open. The
maximum bilayer-cytoskeletal dissociation stress increases
with increased surface area, but the dissociation stress
shown here is still too small to break the bilayer-cytoskeletal
bonds.32

FIG. 8. Effect of the viscosity ratio. (a) The maximum cytoskeleton shear defor-
mation and transit time. (b) The maximum bilayer tension and the maximum
bilayer-cytoskeletal dissociation stress.

C. Effect of the viscosity ratio
We explored the effect of the viscosity ratio between the

fluids inside and outside the cell membrane. The viscosity
ratios are chosen to be 0.75, 1.0, 2.0, 3.5, and 5.0. The max-
imum shear ratio λ1/λ2 and the transit time are illustrated
in Fig. 8(a). The maximum bilayer tension and the maximum
bilayer-cytoskeletal dissociation stress are shown in Fig. 8(b).
We found that the effect of the viscosity ratio on shear defor-
mation and bilayer-cytoskeletal dissociation stress is relatively
small. On the other hand, the transit time increases linearly
with the increased viscosity ratio. For sickled RBCs, whose
viscosity is much higher than healthy RBCs, it may take a
longer time for them to pass through the inter-endothelial
slits and increase the chance of their capture by macrophages.
The maximum bilayer tension increases with a higher vis-
cosity ratio, but less than 500 pN/µm. Overall, the effect of

FIG. 9. Effect of initial cytoskeleton shear modulus. (a) The maximum cytoskele-
ton shear deformation and transit time. (b) The maximum bilayer tension and the
maximum bilayer-cytoskeletal dissociation stress.
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the viscosity ratio is more important for the bilayer than the
cytoskeleton.

D. Effect of cytoskeleton shear modulus
We studied five cases with initial cytoskeleton shear mod-

ulus of 5.0 pN/µm, 7.5 pN/µm, 10.0 pN/µm, 15.0 pN/µm,
and 20.0 pN/µm. It was found that the shear modulus of
RBCs is increased by one order in malaria-infected RBCs or
in Southeast Asian Ovalocytosis (SAO).74,75 The study of the
effect of cytoskeleton shear modulus could help us under-
stand the special behaviors of these diseased RBCs when they
pass through the splenic slits. We adjusted the persistence
length of the spectrin in our multiscale RBC model to get
these different initial shear moduli for a parametric study.
Figure 9(a) shows the maximum shear ratio λ1/λ2 and the
transit time. Figure 9(b) shows the maximum bilayer tension
and the maximum bilayer-cytoskeletal dissociation stress. The
transit time increases slightly with larger initial shear mod-
ulus, and the cytoskeleton shear modulus may have a non-
significant impact on the retention rate of RBCs in the slit.
The bilayer tension first reduces rapidly and then becomes
constant when the cytoskeleton shear modulus is increased.
Its maximum value is only about 300 pN/µm. When the ini-
tial cytoskeleton shear modulus is increased, the maximum
shear ratio decreases quickly while the maximum bilayer-
cytoskeletal dissociation stress increases rapidly. In brief, the
increased cytoskeleton shear modulus enhances the mechan-
ical role of the cytoskeleton compared to the bilayer in this
composite membrane.

Putting together the effects of the viscosity ratio and the
shear modulus, our results show that the increased viscos-
ity ratio enhances the role of the bilayer and reduces the
role of the cytoskeleton in the composite membrane, while

increased shear modulus has the opposite effect by increasing
the role of the cytoskeleton and downplaying the role of the
bilayer.

E. Temporal and spatial distributions of cytoskeletal
shear deformation, bilayer tension,
and bilayer-cytoskeletal interaction in a RBC

We examined the spatial distributions of cytoskeletal
shear deformation, bilayer tension, and bilayer-cytoskeletal
interaction stress at different time steps when a RBC is
passing through the slit. The distributions of shear ratio λ1/λ2
in the cytoskeleton are shown in Fig. 10. Before the cell enters
the slit, the shear ratio over the cell membrane is very close
to 1.0. Only for a small part which already gets inside the slit,
the shear ratio is higher than 1.0. When the cell is squeezing
through the slit, the shear ratio of the membrane inside the
slit increases rapidly. With a diameter of about 8.0 µm, the cell
has to undergo large deformation to pass through the slit with
a width of 0.84 µm, which causes the significant cytoskele-
tal shear deformation. After the cell exits the slit completely,
the shear ratio reduces to 1.0 with the recovery of cell
shape.

The distributions of the bilayer tension and bilayer-
cytoskeletal interaction stress at different time steps are
shown in Figs. 11 and 12, respectively. Similarly, before the
cell enters the slit, both the bilayer tension and bilayer-
cytoskeletal interaction stress are very small and increase
rapidly when the cell is passing through the narrow slit
due to large cell deformation. While the maximum bilayer
tension is concentrated on the rear part of the cell mem-
brane, the maximum bilayer-cytoskeletal interaction stress
is concentrated on the membrane which is right inside
the slit with positive values, which means that bilayer and

FIG. 10. Temporal snapshots of cytoskeleton shear deformation distributions at time t = 0.0012 s, t = 0.0072 s, t = 0.0124 s, and t = 0.0156 s. The shear deformation is
defined as the shear ratio λ1/λ2, where λ1 and λ2 are the principal stretches.

FIG. 11. Temporal snapshots of bilayer tension distributions at time t = 0.0012 s, t = 0.0072 s, t = 0.0124 s, and t = 0.0156 s. Positive values mean tension, while negative
values mean compression. Unit: pN/µm.
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FIG. 12. Temporal snapshots of bilayer-cytoskeletal interaction stress distributions at time t = 0.0012 s, t = 0.0072 s, t = 0.0124 s, and t = 0.0156 s. Positive values
mean that the bilayer and the cytoskeleton are associating with each other, while negative values mean that they are dissociating from each other (dissociation stress).
Unit: Pa.

cytoskeleton tend to associate together. Just before the cell
exits the slit (t = 0.0124 s), the bilayer-cytoskeletal dissocia-
tion stress reaches its maximum at the trailing edge, which
suggests that the cytoskeleton tends to dissociate from the
bilayer. After the cell exits the slit, the cell shape is recovered
and the bilayer tension and the bilayer-cytoskeletal interac-
tion stress are reduced quickly.

VIII. CONCLUSIONS AND DISCUSSIONS
The verifications and results show that the formulated

boundary integral method with the Neumann boundary con-
dition can successfully and accurately predict the dynam-
ics of a RBC squeezing through a submicron slit. The infor-
mation such as cell deformation, transit time, and internal
stress will shed insights on rich behaviors of RBCs in the
microfluidic experiments and the corresponding splenic fil-
tration process. We systematically investigated the effects of
pressure drop, volume-to-surface-area ratio, internal viscos-
ity, and membrane stiffness on RBC deformation and inter-
nal stress. We found that the spectrin could be stretched by
more than 2.5 times under high pressure. We predicted that
the bilayer tension could be more than 500 pN/µm, which
might open the mechanosensitive channels but cannot rup-
ture the bilayer. We also found that the bilayer-cytoskeletal
dissociation stress is too low to induce vesiculation. Further-
more, the bilayer tension, cytoskeleton shear deformation,
and bilayer-cytoskeletal dissociation stress obtained from the
current model will be further coupled with molecular-detailed
models of mechanosensitive channels72 and the bilayer bud-
ding process66 to explore the physics and mechanisms of dis-
eased RBCs when they pass through the splenic slit, such as
sickled RBCs, hereditary spherocytosis (HS) RBCs, and hered-
itary elliptocytosis (HE) RBCs. We will also further explore
the effect of spectrin unfolding on healthy and diseased
RBCs passing through the slits under high hydrodynamic
pressure.

The boundary integral formulation developed will not
only be important for understanding RBCs physiology and
diseases related to splenic filtrations but also be useful for
studying elastic capsules, vesicles, and other cells squeez-
ing through narrow slits in drug delivery and extravasation.
Two examples are (1) cancer cells from a primary tumor pass
through inter-endothelial slits in blood vessel walls in order
to get into the blood circulation and transmigrate to distant

organs; (2) white blood cells adhering to the blood vessel
endothelium often squeeze through the inter-endothelial slits
to target an infection site.

Furthermore, it was recently found that blood plasma
behaves as a Boger fluid,76,77 having a constant shear vis-
cosity and strain-varying extensional viscosity. In particular,
Varchanis et al.77 predicted that strain hardening in human
blood plasma starts at about 550/s elongational rate and
leads to several orders of magnitude jump in elongational
viscosity. From our simulation, we found that the elonga-
tion rate in the microfluidic experiment can be more than
4000/s. Although the water solution, a Newtonian fluid, was
used in the microfluidic experiments, the large elongation rate
indicates that under in vivo conditions, the normal stresses
exerted on the RBC and the wall might be significantly affected
by the presence of long proteins that exist in the lubrica-
tion layer of the blood plasma. The cytoplasm of general
eukaryotic cells is non-Newtonian,78,79 while the cytoplasm of
RBCs is hemoglobin solution and showed Newtonian behav-
ior in bulk solution,1 but whether it behaves exactly as a
Newtonian fluid within such a narrow submicron slit remains
unknown.
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APPENDIX A: NUMERICAL PROCEDURES
TO SOLVE THE COUPLED BOUNDARY INTEGRAL
EQUATIONS ON THE BILAYER, THE INLET/OUTLET,
AND THE WALL

In this section, we will describe how to solve Eqs. (8)–(10)
together for the unknown velocity on the interface, the
unknown velocity on the inlet/outlet, and the unknown trac-
tion on the wall. Let us apply the following lower indices to
denote different boundaries, interface, and domains: w (wall),
c (cell/capsules membrane), i (inlet and outlet), and d (domain
point). We apply four node bilinear quadrilateral boundary
elements with the collocation points on the nodes to dis-
cretize the boundary integral equations and write the bound-
ary element discretization equations in matrix and vector
forms.

1. In the cases of equal viscosity (λ = 1)
When the viscosity ratio of fluids inside and outside the

cell membrane is 1.0, the double layer potential terms of the
bilayer disappear, and the nodal velocity vector on the wall
from Eq. (10) becomes

uw = Sww fw + Swifi + Swcfc + Dwwuw + Dwiui, (A1)

where fw, fi, and fc are the nodal traction vectors on the wall,
inlet/outlet and bilayer interface with dimensions of 3Nw (Nw
is the node number of the wall mesh), 3Ni (Ni is the node
number of the inlet/outlet mesh), and 3Nc (Nc is the node
number of the interface mesh). uw and ui are the nodal velocity
vectors with dimensions of 3Nw and 3Ni, respectively. Sww, Swi,
and Swc are the matrices of the single-layer potential terms
in Eq. (10). Dww and Dwi are the matrices of the double-layer
potential terms in Eq. (10).

Following similar notations, the nodal velocity vector on
the inlet/outlet from Eq. (9) can be written as

ui = Siw fw + Siifi + Sicfc + Diwuw + Diiui. (A2)

The nodal velocity vector on the bilayer interface from
Eq. (8) is

uc = Scw fw + Scifi + Sccfc + Dcwuw + Dciui. (A3)

Since the velocity of the wall is given as the Dirichlet
boundary condition and the traction on the inlet/outlet is
given as the Neumann boundary condition, the unknowns in
Eqs. (A1) and (A2) are fw and ui. We first rearrange Eq. (A1) and
write fw as

fw = −S−1
ww (−uw + Swifi + Swcfc + Dwwuw + Dwiui). (A4)

Then we substitute Eq. (A4) into Eq. (A2); thus, the only
unknown left in Eq. (A2) is ui and can be solved as

ui = (I + SiwS−1
wwDwi − Dii)−1(−SiwS−1

ww )

× (−uw + Swifi + Swcfc + Dwwuw )

+ (I + SiwS−1
wwDwi − Dii)−1(Siifi + Sicfc + Diwuw ). (A5)

Finally the cell velocity can be calculated by Eq. (A3) with
fw given by Eq. (A4) and ui given by Eq. (A5). In addition, the
velocity of the points within the fluid domain can be solved by
Eq. (3) as

ud = Sdw fw + Sdi fi + Sdc fc + Ddwuw + Ddiui. (A6)

2. In the cases of non-equal viscosity (λ , 1)
When the viscosity ratio of fluids inside and outside the

cell membrane is not 1.0, the nodal velocity vector on the wall
should include the double layer potential term of the bilayer

uw = Sww fw + Swi fi + Swcfc + Dwwuw + Dwiui + Dwcuc. (A7)

Similarly, the nodal velocity vector on the inlet/outlet is
given as

ui = Siw fw + Siifi + Sicfc + Diwuw + Diiui + Dicuc. (A8)

The nodal velocity vector on the bilayer interface is

uc = Scw fw + Scifi + Sccfc + Dcwuw + Dciui + Dccuc. (A9)

We applied a successive iteration method8 to solve
Eqs. (A7)–(A9). At each iteration step, uc, ui, and fw can be
updated as

un+1
c = Scw fn+1

w + Scifi + Sccfc + Dcwuw

+Dciun+1
i + Dccun

c , (A10)

un+1
i = u0

i + u′i(u
n
c ), (A11)

fn+1
w = f0

w + f′w (un
c ), (A12)

where (·)0 indicates values when λ = 1; thus, u0
i and f0

w are
computed by Eqs. (A5) and (A4), respectively. u′i(u

n
c ) and f′w (un

c )
are the extra contributions from un

c due to viscosity contrast
(λ , 1) and are updated as

u′i(u
n
c ) = (I + SiwS−1

wwDwi − Dii)−1

× (Dicun
c − SiwS

−1
wwDwcu

n
c ), (A13)

f′w (un
c ) = −S−1

ww (Dwiu′i(u
n
c ) + Dwcun

c ). (A14)

Based on Eq. (A3), we can rewrite Eq. (A10) as

un+1
c = u0

c + Scw f′w (un
c ) + Dciu′i(u

n
c ) + Dccun

c , (A15)

where u0
c is the bilayer velocity when λ = 1 and is calculated by

Eq. (A3).
We will obtain un+1

c ≈ un
c after Eqs. (A7)–(A9) are solved

using the above successive iteration method.8 Since the initial
velocity for the first iteration step is obtained from the pre-
vious time step in the motion of the capsule, which is close
to the current velocity, the iteration number is usually less
than 20.
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Furthermore, the velocity of the points within the fluid
domain can be solved as

ud = Sdw fw + Sdi fi + Sdc fc + Ddwuw + Ddiui + Ddcuc. (A16)

3. In the cases without a cell/capsule
The traction fc and velocity uc on the interface disappear,

so the nodal velocity vector on the inlet/outlet becomes

ui = (I + SiwS−1
wwDwi − Dii)−1

×
{
−SiwS−1

ww (−uw + Swifi + Dwwuw )
}

+ (I + SiwS−1
wwDwi − Dii)−1(Siifi + Diwuw ). (A17)

The nodal traction vector on the wall is

fw = −S−1
ww (−uw + Swifi + Dwwuw + Dwiui), (A18)

and the velocity of the points within the fluid domain is

ud = Sdw fw + Sdi fi + Ddwuw + Ddiui. (A19)

APPENDIX B: MULTISCALE MODEL OF RBC
MEMBRANES

As illustrated in Fig. 13, the three-level multiscale models
and the sequential information-passing approach to connect
them together are described as follows.

1. A modified entropic spring model of spectrin (Sp)
with domain unfolding (Level I)

Spectrin is the major structural protein that deter-
mines the constitutive behavior of the RBC cytoskeleton.

FIG. 13. Three-level multiscale model of a red blood cell. Level I, spectrin (Sp)
constitutive model; Level II, junctional complex (JC) model; Level III, whole-cell
model.

TABLE IV. Bilayer parameters: hb is the effective bilayer thickness, µb is the shear
modulus, Kb is the area modulus, and kc is the bending stiffness.

hb (nm) µb (pN/µm) Kb (pN/µm) kc(J)

2.2 10−3 5 × 105 2 × 10−19

TABLE V. Cytoskeletal parameters: Lf and Lu are the contour lengths of the folded
and unfolded domains, pf and pu are the persistence lengths of folded and unfolded
domains, ∆∆x

∗

= ∆xf→u − ∆xu→ f is the difference between the activation lengths
of the unfolding and refolding processes, and F1/2 is the force by which half of the
domains are unfolded.

pf (nm) pu (nm) Lf (nm) Lu (nm) ∆∆x
∗

(nm) F1/2 (pN)

8.41 0.8 6.39 39 12.6 12

As a highly flexible biopolymer, it is usually modeled by
the worm-like chain (WLC) depiction.21,62 This depiction,
however, does not take into account the fact that spec-
trins can be overstretched, i.e., it can be stretched beyond
its original contour length due to the existence of multi-
ple domains that unfold under sufficient loading. Without
proper representation of this process of domain unfold-
ing, the cytoskeletal stiffness might be overestimated dur-
ing large deformations. Towards this end, we have devel-
oped a modified entropic spring model of Sp by repre-
senting its folding/unfolding reactions as thermally acti-
vated processes.52,58 The force-length curve F = F(x, ẋ) of
a spectrin monomer can be determined by the following
equations:

x
NLf

= (1 − φu)L(
2Fpf
kBT

) + φuL(
2Fpu
kBT

)
Lu
Lf

, (B1)

φu =
exp ( (F−F1/2)∆∆x∗

kBT
)

1 + exp ( (F−F1/2)∆∆x∗

kBT
)

if ẋ ≈ 0, (B2)

where x is the length of the spectrin monomer, N = 19 is the
total number of domains in a spectrin monomer, Lf and Lu
are the contour lengths of the folded and unfolded domains,
φu is the fraction of unfolded domains, L(ζ ) = coth ζ − 1/ζ is
the Langevin function, pf and pu are the persistence lengths
of folded and unfolded domains, ∆∆x

∗

= ∆xf→u − ∆xu→f is
the difference between the activation lengths of the unfold-
ing and refolding processes, and F1/2 is the force by which
half of the domains are unfolded. The values of these param-
eters are shown in Table V. In general, the force F(x, ẋ)
depends on the stretching rate as well and φu is calcu-
lated via Monte Carlos simulations.58 Under the quasi-static
assumption when the stretching is very slow, φu is given by
Eq. (B2). kB is the Boltzmann constant, and T = 310 K is the
temperature.
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2. A molecular-based model of junctional complex
(JC) (Level II)

Consisting of a central piece of short actin protofil-
ament connected with up to six Sp. The junctional com-
plex (JC) is the basic repeating unit in the cytoskeleton of
an erythrocyte, as shown in Fig. 13 (Level II). A molecular-
based model that incorporates the state-of-the-art under-
standing of the exact molecular architecture of a JC (including,
e.g., the exact configuration of actin-spectrin connectivity)
has been developed.52,58 The mean stress resultant τa and
the shear modulus µ can be calculated from this JC model
by evaluating the derivatives of the free energy density w
of the system with respect to the deformation invariants α
and β,

τa(α, β) =
∂w(α, β, F)

∂α
, µ(α, β) =

∂w(α, β, F)
∂β

, (B3)

where F is the force-length curve of the spectrin monomer
obtained from Eq. (B1) in the Level I model and w is the free
energy density. These properties of the cytoskeleton (τa, µ)
are predicted as tabulated two-variable functions of defor-
mation in terms of area invariants α = λ1λ2 − 1 and shear
invariant β = (λ2

1 + λ2
2)/(2λ1λ2) − 1 defined by Evans and

Skalak,60 and they are passed to calculate stresses at the
integration points of shell elements in the Level III whole-
cell model. λ1 and λ2 are the principal stretches and can be
calculated from the polar decomposition of the deformation
gradient G.

3. A whole-cell model (Level III)

A key structural feature of the RBC is the mobile con-
nectivity between its lipid bilayer and cytoskeleton. This is
caused by the fact that these two components are con-
nected through pinning points made of transmembrane pro-
teins, which can drift within the fluid-like lipid bilayer. In
the Level III model, we depict the cell membrane as two
separate layers. The outer layer corresponds to the lipid
bilayer, which has large area stiffness, negligible shear stiff-
ness, and finite bending stiffness. The inner layer, with finite
area and shear moduli, represents the cytoskeleton. The
two layers remain in contact, but they are allowed to slide
against each other with viscous friction. The viscous coeffi-
cient is evaluated by considering the distribution of trans-
membrane proteins (band 3 and glycophorin C) as well as
their mobilities inside the lipid bilayer. Numerically, a non-
linear finite element approach54 using continuum-based shell
elements and penalty contact algorithms is employed to
simulate the dynamics and interactions of both layers.52

The constitutive properties of the cytoskeleton predicted by
the Level II model are used in the Level III finite element
model to calculate the Cauchy stress resultant of the inner
layer as

σ̂ = τa(α, β)I +
µ(α, β)
(α + 1)2

(B −
trace(B)

2
I), (B4)

where τa and µ are the membrane mean stress resultant and
shear modulus and calculated by Eq. (B3). B = GGT is the left
Cauchy-Green deformation tensor.

In summary, in our multiscale framework, these three
models are connected through a sequential information-
passing technique:11,52 The tabulated force-length curve of
the spectrin monomer predicted by Eq. (B1) in the Level I
model is used in the Level II model of the junctional com-
plex to calculate the mean stress resultant and shear mod-
ulus in Eq. (B3) as two-variable tabulated functions of α and
β. Then, these two-variable functions are used to calcu-
late the Cauchy stress at the integration points of the shell
elements for the cytoskeleton using Eq. (B4). The detailed
parameters of the multiscale model are listed in Tables IV
and V. The parameters of the cytoskeleton listed in Table V
lead to an initial shear modulus µs = µ(α = 0, β = 0) of 7.5
pN/µm. We used the same set of parameters as we used in
our previous studies such as RBCs in shear flows and tube
flows.11,18,53

APPENDIX C: EFFECT OF SHARP CORNER
SINGULARITIES AND VELOCITY/STRESS FIELDS
IN THE MICROFLUIDIC SLIT

To illustrate the effect of sharp corner singulari-
ties and the mesh optimization technique employed in
our simulation, we solved the velocity and stress distri-
butions in the microfluidic slit and compared with the
results from COMSOL Multiphysics.80 The width of the
narrow slit here is 0.8 µm, the length is 2.0 µm, and
the depth is 5.0 µm. A pressure drop of 150 Pa is
applied between the inlet and outlet. In COMSOL, an
extremely fine mesh was used to ensure that the result is
convergent.

Figures 14(a) and 14(b) are the velocity distributions
on the middle plane from COMSOL and our numeri-
cal simulation, respectively. Figure 14(g) shows the veloc-
ity distributions along the x direction (y = 0) in the slit.
We can clearly see that the velocity with mesh opti-
mization is much closer to the COMSOL grid-converged
solution, especially on the inlet part. The slightly dis-
crepancy between the black curve and the red curve is
because of the coarse mesh consisting of 3000 quadri-
lateral elements used in the boundary element method,
in contrast to the 117 507 tetrahedral elements used in
COMSOL.

The stress distributions of τxx and τxy from COM-
SOL are shown in Figs. 14(c) and 14(e), respectively. The
corresponding solutions from our numerical simulation are
shown in Figs. 14(d) and 14(f), respectively. Figure 14(h)
gives the comparison of shear stress τxy along the y direc-
tion at the center of the slit between the COMSOL solu-
tion and our simulation. We can clearly see that the
results from our simulations are very close to the COMSOL
grid-converged solutions. The mesh optimization technique
was employed in the simulations when we computed the
stresses.
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FIG. 14. Velocity and stress distribu-
tions on the middle plane in the domain.
[(a) and (b)] Velocity distributions from
COMSOL and current numerical simula-
tion. Unit: µm/s. [(c) and (d)] τxx from
COMSOL and current numerical simu-
lation. Unit: Pa. [(e) and (f)] τxy from
COMSOL and current numerical simu-
lation. Unit: Pa. (g) Velocity along the x
direction (y = 0) on the middle plane. (h)
Shear stress τxy along the y direction
(x = 0) on the middle plane. The origin
of the xy coordinate system is set at the
center of the slit.
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