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a b s t r a c t

Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics
simulations. Numerical efficiencies have been reported in the cases of aggressive coarse-graining, where
several lipids are coarse-grained into a particle of size 4 ∼ 6 nm so that there is only one particle in the
thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained
lipid particles to capture the mechanical properties of a lipid bilayer membrane, such as gel–fluid–gas
phase transitions of lipids, diffusion, and bending rigidity Yuan et al. (2010). In this work we implement
such an interaction potential in LAMMPS to simulate large-scale lipid systems such as a giant unilamellar
vesicle (GUV) and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid
membrane dynamics as a model for RBC dynamics, and incorporate coarse-grained water molecules to
account for hydrodynamic interactions. The interaction between the coarse-grained water molecules
(explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. To demonstrate that the
proposed methods do capture the observed dynamics of vesicles and RBCs, we focus on two sets of
LAMMPS simulations: 1. Vesicle shape transitions with enclosed volume; 2. RBC shape transitions with
different enclosed volume. Finally utilizing the parallel computing capability in LAMMPS, we provide
some timing results for parallel coarse-grained simulations to illustrate that it is possible to use LAMMPS
to simulate large-scale realistic complex biological membranes for more than 1 ms.
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1. Introduction

In recent years, great progress has beenmade to understand the
dynamics of vesicles (self-enclosing lipid bilayer membranes) and
red blood cells (RBCs) in aqueous solutions due to their relevance
in awide range of fields such as biology, biophysics, and biomedical
engineering. Amain component of the vesicle and RBCmembranes
is the amphiphilic lipid molecules, which self-assemble to form li-
posomes (vesicles) or micelles. In a viscous fluid flow, the vesicle
may deformdue to the balance between viscous stress, bending re-
sistance and tension forces in themembrane. In this workwe focus
on pure lipid bilayer membrane and neglect the effects of multi-
ple lipid species and different transmembrane proteins on the lipid
bilayer membrane. For a pure lipid bilayer membrane, the equi-
librium shapes of vesicles immersed in fluid have been widely
studied in continuum modeling and coarse-grained molecular
dynamics (CGMD) modeling. In the continuum framework, the
dynamics and equilibrium shape of a lipid bilayer membrane is
governed by the Helfrich free energy that consists of mean, Gaus-
sian and spontaneous curvatures of the membrane [1]. The total
membrane energy is integrated over the surface Ω as

E =


Ω


γ +

B
2
(c1 + c2 − c0)2 + κ̄c1c2


dA, (1)

where {c1, c2} are the principle curvatures, γ is the surface tension,
B is the bending rigidity, κ̄ is the saddle-splaymodulus and c0 is the
spontaneous curvature. Without membrane tension (γ = 0) and
saddle-splay energy (κ̄ = 0), Eq. (1) is reduced to the classical Hel-
frich–Canham energy which consists of only the bending rigidity
and spontaneous curvature:

E =


Ω

B
2
(c1 + c2 − c0)2dA. (2)

Continuummodeling has successfully reproduced vesicle and RBC
dynamics in a fluid flow [2], even though several physical proper-
ties of the lipid bilayer membrane (such as membrane diffusivity
and temperature-dependent bending rigidity) have to be assumed
in the continuum framework. In the aggressive coarse-graining, the
lipid bilayer membrane is modeled as a one-particle-thick mono-
layer of coarse-grained lipid particles, with each particle contain-
ingmany lipids. By specifying the potential for particle interaction,
the lipid properties of hydrophilic heads and hydrophobic tails
can be preserved [3]. Hence, a characteristic length scale of one-
particle-thick CGMDmembranemodel is often chosen as the thick-
ness (4–5 nm) of lipid bilayer membrane. In this work we focus on
the meshfree CGMDmembrane model, first introduced by Drouffe
et al. in early 1990s [4]. They showed that their simulationmethod
can well predict the self-assembly property of lipid bilayer mem-
brane. By controlling the model parameters in one-particle-thick
CGMDmembrane model, Yuan et al. showed that the various lipid
phases (gel, fluid and gas) and the physically reasonable lipid diffu-
sivity can be achieved [3]. With the development of LAMMPS and
advancement of large-scale parallel computing, long-time simula-
tions are nowmore achievable for examining the dynamics of lipid
bilayer membranes in aqueous solutions. In this work we adopt
CGMD and implement the pair-potential function for the coarse-
grained lipid particles in LAMMPS for numerical investigation of
vesicle and RBC dynamics.

To fully understand the dynamics of a lipid bilayer membrane
with spontaneous curvature, two approaches are introduced in the
particle based MD simulations: (1) Pair-potential for fluid lipid
membrane which involves membrane-solvent, fluid membrane
network and solvent–solvent interactions [3,5–7]. (2) Local multi-
body curvature energywhich consists of a local curvature potential
based on aplanarity, excluded volume (as a repulsive) potential and
an attractive potential that depends on the local particle density
[8,9]. Both approaches have their particular advantages in
numerical investigation, and results show that they are able
to reproduce the self-assembly property of a fluid-phase lipid
membrane. In this work we implement the pair-potential function
for CG lipid bilayer membrane in LAMMPS. We will illustrate how
to simulate themembrane dynamicswith either explicit or implicit
solvent in LAMMPS to study the membrane property and dynamic
shape transitions of vesicles and red blood cells. Two specific
applications to the biological systemsusing LAMMPS are presented
in this paper:
1. Vesicle shape transitions

Seifert et al. calculated the phase diagram of vesicle shape
transitions using the Helfrich free energy (with a spontaneous
curvature) described above, and provided detailed theoretical
insight to the vesicle equilibrium shapes by comparing with
experiments [10,11]. We will illustrate how to use LAMMPS to
model the vesicle shape transition due to volume reduction. In
the one-particle-thick CGMD membrane model, we will include
coarse-grained water molecules (explicit solvent) to account for
hydrodynamic interactions.
2. Resting shapes of RBCs

We extend the CGMDmodeling of a vesicle to a RBC, where the
surface structure is a lipid bilayer membrane coupled with a layer
of cytoskeleton network underneath. Laboratory experiments
show that RBC can form stomatocyte, discocyte and echinocyte
minimum-energy shapes. In early 2000s, Lim et al. introduced the
mechanical theory for predicting the stable RBC shapes involving
area difference between outer and inner leaflets of RBCs. Lim et al.
adopted area-difference-elasticity model (ADE) which describes
the free energy using spontaneous curvature and geometrical
area difference of RBCs to reproduce the RBC shapes under cases
of reduce relaxed area difference and compared the simulation
results of RBC shapes with experiments [12].

In the past, the hydrodynamics of a RBC in a fluid flow has
been simulated by using finite element method (FEM), immersed
boundary method (IB), dissipative particle dynamics (DPD) [13–
15] and Langevin dynamics. In this work we adopt Nosé–Hoover
algorithms in CGMD and compare our numerical results with
previous results from continuummodel simulations.

This paper is organized as follows: In Section 2 we introduce
the new pair-potential model for fluid membrane and numerical
integration scheme for MD simulations in LAMMPS. In Section 3
we discuss the methodology of accounting for the hydrodynamic
interaction in this work. In Section 4 we provide the details of
setting up the case studies in LAMMPS. In Section 5 we analyze
the membrane property such as in-plane lipid diffusivity and
bending rigidity by simulating a square membrane patch in 3D
box. In Section 6 we demonstrate the dynamics of vesicle and RBC
from LAMMPS simulations and compare with previous simulation
results [2,7] where the solvent and internal fluid are coarse-
grained. Finally, Section 7 includes a short conclusion and remark
for LAMMPS users.

2. Model descriptions

2.1. Coarse-Grained (CG) modeling

The advantage of using coarse-grained modeling is to reduce
the computational cost. Without losing physical properties of lipid
bilayer membrane, characteristic length scale in CG modeling
can be much larger than atomistic sizes and simulations can be
performed for a much longer time. Fig. 1 shows that lipid bilayer
membrane can be represented as: (a) 1 bead for lipid head and
rigid rod for lipid tail [16]; (b) 1 bead for lipid head and 2 beads
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Fig. 1. Various CG membrane models: (a) 1 bead for lipid head and rod for lipid tail; (b) 1 bead for lipid head and 2 beads for lipid tail; (c) 1 bead for a collection of lipids
without mesh.
Source: panel (a) and (b) are reprinted from [17]; panel (c) is reprinted from [8].
Fig. 2. Schematics of normal vectors, angular parameters for the particle pair {ri, rj}
and relationship between angle parameter θ0 and spontaneous curvature c0 where
d0 is the average interparticle distance.

for lipid tail [17]; (c) 1 bead for a collection of lipids with the
bead diameter as the thickness of lipid bilayer membrane [8,9].
For all LAMMPS simulations in this work, we adopt the coarse-
graining in panel (c), the one-particle-thickmeshlessmodel where
the characteristic length is the diameter of coarse-grained particle
(lipid bilayer membrane thickness).

2.2. Pair-potential model for membrane

In this work we implement in LAMMPS the lipid–lipid inter-
action potential function for CGMD simulations of a lipid bilayer
membrane. Developed by Yuan et al., the interaction potential be-
tween coarse-grained lipid particles is constructed to account for
the head–head, tail–tail and head–tail interactions between the
coarse-grained lipid mesoscopic molecules [3,7]. Fig. 2 shows the
schematic of inter-particle interactions, angular parameters and
the approximation of spontaneous curvature c0. d0 is the average
inter-particle distance and the dimensionless spontaneous curva-
ture is c̃0 = R0c0 where R0 is the radius of spherical body. {θi, θj}
indicate the orientations of particle pair {ri, rj}.

Denoting the position of ith CG particle as ri, for each pair of
particles {ri, rj}, we only consider the repulsive potential uR(r)
and attractive potential uA(r) which are given by the following
formulas

uR(r) = ϵ


rmin

r

4

− 2

rmin

r

2
uA(r) = −ϵ cos2ζ


π

2
(r − rmin)

(rc − rmin)


,

(3)

with r = |rij| ≡ |ri − rj|. The exponent ζ controls the slope of
the attractive branch and rc is the cutoff radius. rmin is the distance
which minimizes the potential energy uA(r) and rmin =

6√2σ ,
where σ is the length unit. ϵ is the energy unit which we set
kBT = 0.23ϵ for numerical simulations in Section 6.

We then define an angular functionφ(r̂ij,ni,nj)which depends
on the relative orientation between particle pair ri and rj:

φ(r̂ij,ni,nj) = 1 + µ(a(r̂ij,ni,nj) − 1) (4)

a(r̂ij,ni,nj) = (ni × r̂ij) · (nj × r̂ij) + sin θ0(ni − nj) · r̂ij
− sin2 θ0 (5)

where r̂ij = rij/r ,µ is the parameter related to bending rigidity and
θ0 is the parameter related to the spontaneous curvature. The pair-
interaction potential U of each pair of particles {ri, rj} is expressed
in terms of the angular function φ, uR(r), and uA(r) as

U(rij,ni,nj) =


uR(r) + [1 − φ(r̂ij,ni,nj)]ϵ, r < rmin
uA(r)φ(r̂ij,ni,nj), rmin < r < rc .

(6)

Fig. 3(a) shows the variation of a(r̂ij,ni,nj) with {θi, θj}, and
Fig. 3(b) shows the dependence of the attractive component of the
potential U(rij,ni,nj) on parameter ζ . From the formulas above,
the simplest case is when the normal vectors {ni,nj} are parallel,
which gives a = 1 and φ = 1. Finally, after implementation is
completed in LAMMPS, we name this new pair-potential function
as

pair_fluidmembrane

and this package includes one main script and one header file. To
call this pair interaction function in LAMMPS, the input commands
are given as follows:

pair_style hybrid lj/cut 3.6 fluidmembrane 2.6

pair_coeff 1∗2 1∗2 fluidmembrane 1.0 1.0 2.6 4 3 0

where we give the parameters for global cut-off lengths in the
pair-potential. The above LAMMPS commands can also be used
to call the Lennard-Jones potential, which is used to model the
interaction with explicit solvents in Section 6. The sequence
of parameters for ‘‘fluidmembrane’’ pair function are given by:
ϵ σ rcut ζ µ sin θ0.

2.3. Cytoskeleton

The cytoplasmic membrane of a RBC is coupled to a cy-
toskeleton network. Within the coarse-grained formulation, the
cytoskeleton network is modeled as a polymeric network that
contains three basic types of coarse-grained particles: (1) Junc-
tion complexes (actin protofilament and protein band 4.1) are
located at the end of spectrin tetramers, (2) Spectrin tetramers
(composed of consecutive bonded beads), and (3) Ankyrin pro-
teins located in middle of spectrin beads which connect network
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Fig. 3. (a) Surface plot for the values of a(r̂ij,ni,nj) versus corresponding {θi, θj}; (b) Dependence of potential energy on angular parameter θ0 when the model parameter
ζ = 4.0.
Fig. 4. Cross-section snapshot of cubical simulation box for coarse-grained RBC simulation in LAMMPS with periodic boundary condition; 7 types of particles are shown
in this image: lipid membrane (blue), transmembrane protein (pink), junction complexes (dark purple), spectrin tetramers (lime), ankyrin (light purple), internal water
(brown) and external water (gray) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
to transmembrane proteins. Since we focus on the RBC shape tran-
sition at the small deformation regime, we use harmonic springs to
model the connectivity between the coarse-grained lipid bilayer
membrane and the cytoskeleton network through binding with
spectrin, ankyrin and other linking proteins.

The harmonic bond potential is given by Eq. (7):

Eharmonic = K(rij − r0)2, (7)

where K is a constant and r0 is the equilibrium distance of
each bond. The number of coarse-grained cytoskeleton particles
depends on the average distance between each pair of ankyrins.
As the cytoskeleton network is enclosed by the lipid bilayer
membrane, strong thermal fluctuations may cause nonphysical
phenomenon in the CGMD simulations. For example, the coarse-
grained cytoskeleton particlesmaymove to the cell exterior. In our
simulations precautions are made to prevent this from happening.
In the initial configuration of the CGMD simulations of RBC, we
put no water molecule between the membrane and cytoskeleton
network.

Fig. 4 shows the initial configuration of a coarse-grained RBC
and water molecules. Including internal water molecules and
external water molecules, we have total 7 types of particles for
simulations in LAMMPS.

2.4. Langevin dynamics

The dynamics of a coarse-grained macromolecule has been
modeled by the Langevin equation. In the case of a coarse-grained
lipid bilayer membrane, the Langevin equation with constant
friction coefficient is often adopted:

mi
d2ri
dt2

= −ζ
dri
dt

+ Fi +

2kBTζWi, (8)

where mi is the mass of coarse-grained particle i, ζ is the fric-
tion coefficient and Fi is the interparticle force. The coefficient
of Wiener process Wi connects the thermal fluctuations of the
particles through hydrodynamic interactions. Thermal fluctuation
effect is significant in this length scale following from fluctua-
tion–dissipation theorem therefore the axisymmetric case is not
considered in this work. In the absence of external driving forces,
the covariance between the bead displacements satisfies the fol-
lowing relation

⟨Wi(t)⟩ = 0, ⟨Wi(t)Wj(t ′)⟩ = 2kBTζ δijδ(t − t ′). (9)

Therefore, the magnitude of thermal fluctuation can be controlled
by fixing the system temperature.

2.5. Nondimensionalization

For LAMMPS simulations, we nondimensionalize length, time
and temperature units by following the scaling by specifying the
LAMMPS unit style units lj:

ls = σ , where x∗
=

x
σ

; ts = τ ,

where t∗ = t


ϵ

mσ 2
; T ∗

= T
kB
ϵ

,
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Fig. 5. Lennard-Jones potential and force curves with σeq = 2.7 and ϵ = 1.0. The
blue dot represents the casewhen theminimumenergy occurs at rmin/σeq = 21/6

≈

1.12. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

where m is the mass of each CG membrane particle and T is the
temperature. In our LAMMPS input, we set

mass bilayer 1.0

3. Hydrodynamic and interparticle interactions

In this work, the Lennard-Jones (L-J) potential is used for the
interaction between coarse-grained lipid particles, coarse-grained
cytoskeleton and water molecules. As water molecules may pass
through the porous structures in the cytoskeleton, we need to take
the membrane–water interactions into account. In addition, we
also add L-J potentials for cytoskeleton network and membrane to
prevent proteins from coming out of the RBC. The L-J potential is
given by the following formula

ELJ = 4ϵ


σeq

rij

12

−


σeq

rij

6
, (10)

where rij is: (a) distance between two coarse-grained water
molecules; (b) distance of each pair of coarse-grained cytoskeleton
particles; (c) distance between membrane or cytoskeleton and
watermolecules. σ is the equilibrium length to the interactions. To
implement these interactions in LAMMPS, we have the following
commands in the input script:

pair_coeff 1∗2 6∗7 lj/cut 0.2 1.0

pair_coeff 1∗2 3∗5 lj/cut 0.2 1.0

pair_coeff 3∗5 3∗5 lj/cut 0.2 1.0

pair_coeff 3∗5 6∗7 lj/cut 0.2 1.0

pair_coeff 6∗7 6∗7 lj/cut 0.2 2.7

where atom type 1–2 are membrane components, type 3–5 form
cytoskeleton network and atom type 6–7 are internal and external
water molecules.

Fig. 5 shows one example when σeq = 2.7, ϵ = 1.0 case. For
water–water interactions, a smaller value of σeq implies a smaller
effective volume occupied by the coarse-grained water molecules.
Instead of changing the number of coarse-grainedwatermolecules
to adjust the interior RBC/vesicle volume, we adjust σeq for the
coarse-grained internal water molecules to control the volume in
RBC. This approach is advantageous as it gives the desired interior
volume in LAMMPS simulations.

4. Implementation in LAMMPS

The initial configuration for LAMMPS simulations is generated
by a MATLAB code. For vesicle simulations it includes membrane,
internal watermolecules and external watermolecules. In the case
of CGMD RBC simulations, an addition of cytoskeleton network
Table 1
The atom styles used in current numerical simulations.

Ellipsoid Atom-ID atom-type ellipsoidflag density x y z
Peri Atom-ID atom-type volume density x y z
Molecular Atom-ID molecule-ID atom-type x y z
Hybrid Atom-ID atom-type x y z sub-style1 sub-style2 sub-style3

is generated. In LAMMPS we specify multiple atom styles using
hybrid function and call ‘‘ellipsoid’’, ‘‘molecular’’ and ‘‘peri’’. Here
we provide the LAMMPS command in the script:

atom_style hybrid ellipsoid peri molecular

‘‘peri’’ is for extracting the initial configurations (x0 in LAMMPS)
of all coarse-grained particles including bilayer membrane and
cytoskeleton network [18]. The data format provided below is for
satisfying the hybrid atom style listed in Table 1 from LAMMPS
guidelines:

atom-ID atom-type x y z ellipsoidflag

density volume density molecule-ID

4.1. Modified harmonic bond function

The water volume enclosed in the lipid bilayer membrane is
controlled by adjusting the effective radius of the coarse-grained
water molecules. For the case of a RBC, it is important to ensure
that RBC cytoskeleton is stress-free in the initial configuration so
we can conduct comparison with previous results in the literature.
One way to ensure a stress-free RBC cytoskeleton is by modifying
the equilibriumbond length in Eq. (7) so that initially the harmonic
bond energy is zero for the cytoskeleton.

Thus, we modified the harmonic bond in LAMMPS by calling
initial configuration x0 and calculate the bond length l0(ri, rj)
between each pair of particles at the beginning of simulation.
Different from the harmonic bond function in LAMMPS where the
bond length r0 is a constant in Eq. (7), the modified harmonic bond
energy is now

Ẽharmonic = K(rij − l0(ri, rj))2, (11)

where l0 = |x0, ij| is the initial length of the bond. This slight
modification helps us achieve a stress-free configuration for the
cytoskeleton before we reduce the RBC volume.

We first show the LAMMPS command which is made for the
specific bond style: bond_style harmonic1 The following lines
are the codes we modified from

bond_harmonic.cpp

and create a new C++ source code and header file with the name
bond_harmonic1.cpp

bond_harmonic1.h

The following lines are the code which calculates the bond lengths
l0 in Eq. (11):

double **x0 = atom → x0;

double **x = atom → x;

delx0 = x0[i1][0] - x0[i2][0];

dely0 = x0[i1][1] - x0[i2][1];

delz0 = x0[i1][2] - x0[i2][2];

delx = x[i1][0] - x[i2][0];

dely = x[i1][1] - x[i2][1];

delz = x[i1][2] - x[i2][2];

rsq = delx*delx + dely*dely + delz*delz;

r = sqrt(rsq);

l0 = sqrt(delx0*delx0 + dely0*dely0+ delz0*delz0);

dr = r - l0;

rk = k[type]*dr;
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4.2. Choices of thermostat algorithms

Quite a few thermostat algorithms are available in LAMMPS to
provide the desired system temperature, such as Langevin ther-
mostat [19], Berendsen thermostat [20] and Nosé–Hoover ther-
mostat [21]. In particular Nosé–Hoover thermostat is one of the
most accurate integration methods in molecular dynamics sim-
ulations, and LAMMPS users often use Nosé–Hoover thermostat
with NVT (constant number of particles, volume and temperature),
NVE (constant number of particles, volume and total energy) or
NPT (constant number of particles, system pressure and temper-
ature) ensembles to run the simulations of biological system. For
running the equilibrium state of vesicle and RBC simulations, we
combined the NVT and NPT ensembles to control the system. We
observed that using NPT ensemble on water molecules and cy-
toskeleton network and NVT ensemble for coarse-grained mem-
brane is able to acquire numerical stable configurations. Excerpt
from the input script for LAMMPS simulations, we have the fol-
lowing lines to adopt the algorithms:

variable ini_T equal 0.02
variable T equal 0.23
variable P equal 0.05
variable LD equal 1.0
variable P_damp equal 1
fix 1 water npt temp${T} ${T} ${LD} iso ${P} ${P}

${LD}
fix 2 network npt temp${int_T} ${T} ${LD} iso ${P}

${P} ${P_damp}
fix 3 bilayer nvt/asphere temp ${T} ${T} ${LD}

4.3. Volume control of water molecule inside the cell

In our CGMD simulations of lipid bilayer membrane dynamics,
we have assumed that no internal fluid molecules will be able
to move across the membrane or cytoskeleton and vise versa
for the solvent. By adjusting the equilibrium cut length of L-J
potential for internal water–water interactions, a smaller σeq
implies less neighbors of watermolecules to be taken into account,
and thismeans that thewater volume inside the cell is reduced. For
instance, our goal may be to reduce the vesicle volume during the
simulationwithin a given amount of time. Using the ramp function
we can achieve nearly constant rate of change in vesicle volume.
In the LAMMPS running script below, we use a ramp function to
gradually adjust the equilibrium length σeq over time to control
the cell volume after the desired initial configuration of the cell is
obtained.

variable scale1 equal ramp(2.7,2.66)
fix 4 water adapt 1 pair lj/cut sigma 6 6 v_scale1

Fig. 6 is an example, where the green line shows the linear
decrease of σeq from 2.7 at t ∼ 0.8 µs (when the equilibrium
configuration is reached) to σeq ∼ 2.1 at t ∼ 8 µs. The
corresponding vesicle volume scaled to the initial vesicle volume
v0 is depicted in the blue curve. We observe that the wiggles of
blue curve is due to the thermal fluctuation effect and the trend of
decreasing volume is near linear.

4.4. Simulating procedure in LAMMPS

Fig. 7 is the general procedure in which LAMMPS users should
follow solid arrows for performing vesicle simulations and both
dashed and solid arrows for RBC simulations:
1. For complicated geometries such as RBC which requires an el-

liptic region for membrane and a hexagonal network for cy-
toskeleton network, one can use MATLAB script to generate the
initial configurations. Otherwise, LAMMPS can handle spherical
region or rectangular patch with the command region.
Fig. 6. Dashed line represents the linear decreasing L-J equilibrium length σeq over
time and the solid curve is the volume fraction v(t)/v0 over time. The occurrence
of wiggles is due to the effect of thermal fluctuation presented in the simulation.
Clearly, the volume of cell is reduced while σeq is decreasing.

Fig. 7. Flow chart of simulation procedures in LAMMPS. For simple membrane
structure such as planar membrane or vesicle, the procedure follows the solid
arrows; for RBC simulations all steps connected by dashed arrows are included.

2. Prepare LAMMPS input script to initialize the particlesmass, ve-
locities, time step size and the simulation run length.



S.-P. Fu et al. / Computer Physics Communications 210 (2017) 193–203 199
3. Follows from the requirement of LAMMPSdata format as shown
in Table 1, one needs to call ‘‘hybrid’’ style for using multiple
atom styles in LAMMPS. Depends on the subject of simulations,
one may need to include the bond styles for specific bonds, for
instance, RBC simulations.

4. Use proposed pair-potential as the main pair style for bilayer
membrane; use L-J potential for membrane–water, cytoskele-
ton–water, water–water and membrane–cytoskeleton interac-
tions.

5. Setup modified harmonic bond energy for linking proteins be-
tween membrane and network. Similarly, setup modified har-
monic bond energy for spectrin tetramer and ankyrin bonds.

6. For the steps of running equilibrium state, we use the mix of
NPT and NVT fixes as our thermostats.

7. Adjust the value of σeq in L-J potential for internal water–water
interactions to achieve the cell volume reduction.

8. Finally, generate LAMMPS output data into the file format
‘‘.lammpstrj’’.

4.5. Descriptions of the subprograms and sample output

The subprograms include:

• create_rbc_with_water (MATLAB),
• bond_harmonic1 (C++),
• in_example (LAMMPS input script).

We have provided the details of LAMMPS implementations
for the LAMMPS input script and modified harmonic bond
function in the sections above. Here we include a sample run
for RBC simulation where the initial configuration of the RBC
is a sphere. The MATLAB script generates an initial data file
for the configurations of all atoms including coarse-grained lipid
bilayer membrane, cytoskeleton network and water molecules
where the generated data file satisfies the file format described
above at the beginning of Section 4. LAMMPS is capable to assign
specific regions for simple geometries such as planar membrane
or spherical surfaces and fill the regions with desired atoms.
For this example we require a hexagonal network to represent
the cytoskeleton network which is not trivial to be done in the
LAMMPS input script. Therefore, with the use of MATLAB script as
supplementary tool we can create complicated shapes of objects.

The provided LAMMPS input script dumps a LAMMPS trajectory
file (.lammpstrj) and it can be read in various of visualization
softwares. For this work Visual Molecular Dynamics (VMD) 1.9.1 is
used to generate snapshots from the simulation data and here we
show the screen-shot of VMD setting windows and the snapshots
of simulation output (without showing water molecules) for this
example in Fig. 8.

5. Membrane properties

We first show that the proposed pair potential for coarse-
grained lipid molecules reproduces some of the basic membrane
properties such as in-plane diffusivity, bending rigidity and
membrane tension. For the diffusivity, we study a planar
membrane patch where the side L ∼ 40σ and the particle number
N is 5822. The time step size is ∆t = 0.01τ and we adopt the NVE
ensemble with Berendsen pressure control algorithm for 3 × 106

steps. Since the system may take some time to equilibrate, we
follow the protocols in the literature [8,9] to average over the last
1.5 × 106 steps for considerations. The diffusivity can be observed
by tracking the mean-square-displacement (MSD) which is given
by the following formula:

MSD(t) =
1
N

N
i=1

⟨(ri(t) − ri(0))2⟩, (12)
where MSD is an accumulated value over the time period t . From
Einstein’s equation for 2D membrane, we can compute the 2D
diffusivity by

D(t) =
MSD(t)

4t
. (13)

Fig. 9(a) shows initial state of the membrane patch, and the
membrane shape at t ∼ 1 ms in (b). It is clear that coarse-grained
particles move randomly within the membrane as the lipids are in
fluid phase. In LAMMPS mean-square-displacement (MSD) can be
computed and stored by adding specific commands. Fig. 10 shows
MSD and diffusivity as we collect the data every 200 time steps.
Fig. 10(a) gives the linearly increasing MSD which represents the
pure diffusivity. From the use of Eq. (13), we track the diffusivity
over time and the result is shown in Fig. 10(b) which shows the
constant diffusion of membrane.

Next we extract the bending rigidity from the membrane
fluctuation spectrum. Given a profile function h(x, y) of the planar
membrane patch, its Fourier transform

h̃(q) =
1
L


n

h(x, y)eiq⃗·(x,y), (14)

where the wave vector q⃗ =
2π
L (nx, ny) and the wavenumber q is

the norm of wave vector q⃗. Following [22], the bending rigidity and
the membrane tension for a coarse-grained membrane patch in a
3D periodic domain can be approximated by the following formula

⟨|h̃(q)|2⟩ =
kBT

L2(γ q2 + κq4)
, (15)

where γ is the membrane tension and κ is the bending rigidity.
For this numerical study, we generate a large membrane patch

in a periodic domain with size L ∼ 140σ . The particle number
N = 23452 and the time step size ∆t = 0.01τ . The total steps for
simulation is 22× 106 and we dump the trajectories of membrane
into a.xyz file every 1000 time steps. After running 12000τ for
equilibrium state, we calculate the values of fluctuation spectra
by using 2D Fast Fourier Transform in MATLAB which gives fast
evaluations to 2D discrete Fourier transform of height function
h(x, y).

Fig. 11 shows that the fluctuation spectra of our simulation
results lay on both q−2 and q−4 lines. From the fitting to
Eq. (15), we obtain the approximations of bending rigidity κ ≈

18 kBT . This result matches the experimental data of bending
rigidity for vesicles and we observe from case studies that the
bending rigidity is independent of the size of membrane domain.
Therefore, in the following chapter, we perform the numerical
applications by using the same parameter set as one used here.

6. Applications to biological systems

We conduct two sets of simulations—vesicle shape transitions
and resting shapes of RBCs. VisualMolecularDynamics (VMD) 1.9.1
is used to generate snapshots from the simulation data.

6.1. Vesicle shape transitions

Yuan et al. used the pair potential in their CGMD simulations of
a vesicle and demonstrate the shape transitions of vesicles in [7].
Without using water molecules in their CGMD vesicle simulations,
they calculated the volume by local triangulation. The vesicle
volume is controlled by a penalty body force from an energy EV
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Fig. 8. Screenshot of VMD setting windows and 3 snapshots from the output of sample RBC simulation. From top to bottom of the snapshots are (1) initial state of RBC; (2)
equilibrium state of stress-free RBC; (3) resting shape of RBC after performing the volume control algorithm.
Fig. 9. (a) Initial state of a planar membrane patch where we separate the membrane with two different colors. (b) Membrane configuration at t ∼ 1 ms (106 time steps).
We observe that membrane particles can travel through the membrane behaving as a fluid structure. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 10. (a)Mean-square-displacement (MSD) versus time: linearMSD represents the diffusion property of fluidmembrane; (b) From the relationship between the diffusivity
and the MSD, we obtain the plot of diffusivity versus time. For this simulation, the parameters are: ζ = 4, µ = 3, sin θ0 = 0, T = 0.23 and N = 5822.
that drives the system to a desirable equilibrium volume V from
an initial volume V0:

EV =
1
2
KV


V
V0

− 1
2

(16)

where KV is a constant. In principle we can consider Eq. (16) as a
spring energy exerted on the vesicle volume. Therefore, the energy
EV should be incorporated into the total free energy. Once EV is
incorporated, enormous amount of computations is needed for
local triangulation to the enclosed vesicle membrane at each time
step as the volume transitions toward the desirable value [7]. This
makes the computation very slow and inefficient.

Rather than local triangulation for volume calculation, we apply
coarse-grained particles to explicitly model water molecules with
an effective L-J potential for water–water interactions, and adjust
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Fig. 11. Blue circles are our simulation results for the fluctuation spectra of
membrane height versus the quantities q where q is the norm of two dimensional
wave vector. The parameters for this simulation are: ζ = 4, µ = 3, sin θ0 = 0, T =

0.23 and N = 23452. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

the equilibrium radius σeq to achieve the volume control. With
no penalty energy in the total free energy, at each time step we
record the membrane configuration and we are able to compute
the vesicle volume by using volume approximation of convex hull
in MATLAB.

In the following we report that we can reproduce some of
theoretical results using the same set of algorithms in LAMMPS.
For vesicle simulations, we only consider a layer of coarse-grained
membrane interactingwith solvent and calculate the inter-particle
force using the proposed pair-potential. We use a spherical vesicle
as the initial configuration for of the coarse-grained membrane.
The initial vesicle configuration is first generated on MATLAB and
a LAMMPS input file is prepared. We note that the file format for
hybrid atom styles should comply with the LAMMPS requirement.
For example, volume parameter is essential for peridynamics atom
style and the volume of each particle is set to be a fixed constant in
this simulation.

The parameter set for the pair-potential is the same as in
previous work [7]: angular parameter ζ = 4, the parameterµ = 3
is from orientation dependent function φ(r̂ij,ni,nj) in Eq. (4) and
θ0 can be calculated from desired spontaneous curvature c0. For
the energy unit ϵ to the system we set kBT = 0.23ϵ and the cutoff
length in pair-potential is rc = 2.6. The thickness of membrane
is σves ≈ 5 nm and the diameter of vesicle is 50σves. We run
simulations in periodic box where the side is 70σves. As mentioned
in Section 4, we apply NVT ensemble for water interactions and
NPT ensemble for the bilayer membrane. We then perform the
simulation for vesicle shape transitions by using the ramp function
to adjust σeq in the L-J potential for water–water interactions.
Moreover, the equilibrium length of Lennard-Jones potential to
the water–water interactions is initially set with σeq = 2.7. As
described in Section 3, we reduce vesicle volume by decreasing
the value of σeq. From single run simulation with wide range of
change of σeq, say, from 2.7 to 1.5, we are able to track that specific
shapes occurwhenσeq is at corresponding level. After obtaining the
desired vesicle shapes, we unfix the ramp function and relax each
case for several time units to obtain the equilibrium states. Finally,
we recorded the numerical experiments and corresponding σeq
values. We observed that within certain range of σeq the vesicle
will remain at the specific shapes as shown in Fig. 12.

Our simulation data show that one can obtain prolate shape,
dumbbell shape, biconcave shape, stomatocyte-like shape and in-
ward budding cell when σeq ≈ {2.5, 2.3, 2.0, 1.9, 1.7}, respec-
tively. Notice that according to [7], this shape transition can be
achieved by using fast rate of volume change v̇ within 200τ where
τ is the dimensionless timeunit and in real time τ is of order 0.1µs.
The dimensionless time step size ∆t = 0.01 is used for this simu-
lation and total number of time steps is varying for cases of desired
shapes. Fig. 12 shows that startingwith spherical vesicle, when the
spontaneous curvature sin θ0 is set to be 0, we have the shape tran-
sitionswhich are prolate (v = 0.8), dumbbell (v = 0.7), biconcave
(v = 0.6), stomatocyte (v = 0.65) and inside budding shapes
(v = 0.45) with corresponding volume of internal water.

With similar setup, we then perform the simulations for the
caseswhen the spontaneous curvature c0 is nonzero and the results
are shown in Fig. 13. We observed that different from the case
when c0 = 0, for c0 = 2 and c0 = 4, the vesicle forms tube like
configuration and outward budding shapes.

6.2. Resting shapes of RBCs

Recall the modified harmonic bond function in Section 4, the
stress-free configuration of cytoskeleton network plays an impor-
tant role in the study of resting shapes of RBCs, by minimizing the
total elastic energy of the system. Lim et al. compared their simula-
tion resultswith experiments for resting shapes of RBCs for cases of
different spontaneous curvatures and access areas between inner
and outer leaflets of the lipid bilayer [12].

In this study, we consider slightly eccentric spheroid as the
stress-free configuration of a RBC. Denote the volume of each
initial cell as Vs and the volume of original stress-free spheroid
cell as V0, we performed simulations for the cases when the ratio
Vs/V0 are {0.9, 0.925, 0.95, 0.975, 0.995, 0.998}. To validate our
simulations against the continuum simulation results shown in [2],
we reduced the volume of RBC from V0 to 0.65V0 and reproduced
the results under values of spontaneous curvatures c0. Fig. 14
shows the numerical results of stress-free RBC using finite element
method (FEM) [2]. With the use of the same parameter set as given
in the first part of numerical simulations, one additional NPT fix
is needed for cytoskeleton network then we can obtain the stress-
free state for both membrane and cytoskeleton.

The experimental observed size of RBC is 6 ∼ 8µm in diameter
but here we inherit the same cell size from previous section where
the diameter of cell is 50σrbc and the gap between cytoskeleton and
membrane is set to be 2σrbc . As done in the previous simulations,
we used periodic boundary condition to run the simulations. With
enough amount of coarse-grained particles on membrane and
cytoskeleton, the small size of the cell can also achieve the same
deformations as ones occurred in real size RBC. In addition, this
setup reduces computational cost.Wewould like tomake a remark
here that due to the volume of internal water is not fixed for cases
of spheroid, σeq should be carefully adjusted and the cytoskeleton
inside the cell takes space therefore the values of σeq from previous
simulation of vesicles are not feasible.

Our simulation results generated from LAMMPS are shown
in Fig. 14. Comparing our result with the numerical results
from continuum model using FEM, it is clear that for Vs/V0 is
at {0.9, 0.925, 0.95} we have close resting shapes which are
biconcave shapes. Also, for Vs/V0 is at {0.975, 0.995, 0.998} we
have bowl shapes which are nearly identical to the results from
continuum modeling. We want to point out that the shape
transition from bowl shape to biconcave shape is well predicted in
this simulation and we include the zoom-in views of both shapes
in Fig. 15. Lastly, due to the thermostat generated from LAMMPS,
thermal fluctuation would be a huge factor to the simulation
in LAMMPS which may cause numerical instability. Thus, the
time step size for this simulation is smaller than one in previous
sections. Here we used ∆t = 0.005.
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Fig. 12. Shape transitions of vesicle for corresponding values of vesicle volume v when the spontaneous curvature c0 = 0. According to [7], this case of transition occurs
when the volume change rate is high (v̇ = 1.75 × 10−3τ−1).
Fig. 13. Possible shapes of vesicles when curvature c0 is nonzero: (a) Tube like configuration (c0 = 2) and (b) outward budding shape (c0 = 4) when v = 0.65, 0.45,
respectively.
Fig. 14. (a) FEM simulation results for resting shapes of RBC reprinted from [2]; (b) Our simulation results using LAMMPS for various spontaneous curvature c0 versus cases
of Vs/V0 . We also provide the equilibrium length σeq for internal fluid interactions in each simulation.
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Fig. 15. Possible resting shapes of stress-free RBCs: (a) Bowl shape (Stomatocyte); (b) Biconcave shape.
7. Conclusion

In this paper, we incorporate into LAMMPS the pair-potential
developed for one-particle-thick CGMD simulations of lipid bilayer
membranes. Using LAMMPS we demonstrated that the dynamics
of a lipid bilayer membrane immersed in a viscous fluid can be
simulated with explicit solvents. We also provide the instruction
for preparing the simulation setups consisting of the coarse-
grained vesicles, RBCs, internal fluid and solvent. In order to
apply the stress-free configuration of the cytoskeleton of RBCs,
we modify the built-in harmonic bond energy to acquire the
equilibrium state of cytoskeleton network.

Our simulation results show that the orientation-dependent
pair-potential for the coarse-grained lipids well captures the
membrane properties such as membrane diffusivity, bending
rigidity and membrane tension (by evaluating the mean-square-
displacement and fluctuation spectrum of height function). Fur-
thermore we incorporate coarse-grained water molecules to
account for the hydrodynamic interaction between a lipid bilayer
membrane and the fluid around it. A Lennard-Jones potential is
adopted for interactions between solventmolecules, andby adjust-
ing the equilibrium length σeq we can control the volume enclosed
inside the lipid bilayermembrane or RBC. In our CGMD simulations
using LAMMPS we are able to reproduce the shape transitions of
vesicle for cases of desired equilibrium volumes. We also perceive
the contrast between results in continuum modeling and ones in
CGMD for the resting shapes of RBC.

LAMMPS is equipped with the capability for parallel computing
with OpenMPI. To illustrate how the approaches presented in
this paper may be practical for parallel simulation of realistic
biological membranes, here we demonstrate some timing results
from parallel computation of the CGMD model of the lipid bilayer
membrane: (a) for a total number of CG lipid particles N = 23452
running parallel computing on a cluster (with 2.53 GHz 6-core
processor)with 160 CPUs, it takes about 3 h to integrate the system
to 1 ms; (b) Table 2 shows the timing results of GUV simulations
with 144 CPUs. In other words, it becomes practical to couple our
pair function with more complicated biological system.
Table 2
Timing results (s) for running 105 time steps of GUV simulations with 144 CPUs.

Dvesicle Ntotal Nbilayer Nwater T100k(s) Lbox

250 nm 20,011 8,346 11,665 179.70 350 nm
500 nm 147,750 31,404 116,346 439.84 700 nm

1000 nm 1,152,245 125,588 1,026,657 2761.13 1400 nm
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