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Abstract Computational modeling has become increas-
ingly important in biophysics, but the great challenge in
numerical simulations due to the multiscale feature of
biological systems limits the capability of modeling in
making discoveries in biology. Innovative multiscale mod-
eling approaches are desired to bridge different scales from
nucleic acids and proteins to cells and tissues. Although
all-atom molecular dynamics has been successfully applied
in many microscale biological processes such as protein
folding, it is still prohibitively expensive for studying
macroscale problems such as biophysics of cells and tis-
sues. On the other hand, continuum-based modeling has
become a mature procedure for analysis and design in
many engineering fields, but new insights for biological sys-
tems in the microscale are limited when molecular details
are missing in continuum-based modeling. In this context,
mesoscalemodeling approaches such as Langevin dynamics,
lattice Boltzmann method, and dissipative particle dynam-
ics have become popular by simultaneously incorporating
molecular interactions and long-range hydrodynamic inter-
actions, providing insights to properties on longer time and
length scales than molecular dynamics. In this review, we
summarized several mesoscale simulation approaches for
studying two model systems in biophysics: red blood cells
(RBCs) and deoxyribonucleic acids (DNAs). The RBC is
a model system for cell mechanics and biological mem-
branes, while the DNA represents a model system for
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biopolymers. We introduced the motivations of studying
these problems and presented the key features of different
mesoscale methods. Furthermore, we described the lat-
est progresses in these methods and highlighted the major
findings for modeling RBCs and DNAs. Finally, we also
discussed the challenges and potential issues of different
approaches.
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1 Introduction

Alongwith experimental and theoretical investigations, com-
putational modeling has become increasingly important in
the fields of biomechanics and biophysics [1], thank to the
following three facts. First, the speed of computation has
been increased tremendously in the past decades due to the
innovations of CPUs and parallel computing architecture,
following the observations of Moore’s law. Supercomputers
with special purposes for carrying out molecular dynam-
ics (MD) simulations, such as Anton [2], have also been
developed to enable the study of protein folding for millisec-
onds. Secondly, the detailed structures of proteins and cells
have been extensively characterized using experimental tech-
niques such as crystallography and super-resolution electron
microscopes [3]. These characterizations have allowed us to
build accurate computational models based on experimental
measured topology and geometry. In addition, physical prop-
erties such as molecular stiffness and entropic elasticity have
also been measured using state-of-the-art tools such as AFM
and optical tweezers [4], so that they can be incorporated into
the computational models. Thirdly, computational methods
have also been advanced significantly along with the hard-
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ware development, such as the developments of multiscale
modeling approaches [5,6]. However, in many cases of bio-
logical studies, it is still challenging to rely on computational
modeling to make discoveries and to guide design. The cur-
rent main bottle neck is the lack of efficient computational
methods to address the large separation of spatial and tem-
poral scales between the properties of single molecules and
those of bulk materials.

Continuum-basedmodeling such as finite elementmethod
(FEM) [7,8], boundary elementmethod (BEM) [9], finite dif-
ference method (FDM) [10], finite volume method (FVM)
[11], and spectral element method (SEM) [12] have been
successfully applied to study biomechanical and biophysi-
cal problems for organs, tissues, and cells [13–15]. These
methods have been used extensively in different engineering
fields and have become the mature and routine procedures,
with commercial packages available for designing buildings,
bridges, and automobiles [8]. However, due to the multiscale
and heterogeneous nature of biological systems, it is often
difficult to gain new insights with only continuum-based
models. The problem is particularly severe for small systems
such as the cell membrane and biopolymers in which thermal
fluctuations strongly influence measurements and molecular
properties.

On the other hand,MDhas been employed to resolvemany
significant problems in small length scales, such as protein
folding [5,16]. However, the length and time scales acces-
sible to MD are currently limited to nanometers in length
and microseconds in time. Even with specially designed
supercomputer [2], it can only reach millisecond to sim-
ulate proteins without complicated hierarchical structures.
Although all-atom MD is able to provide new insights for
problems with short characteristic lengths and times, many
important biological processes for larger bio-molecules and
cells that occur over seconds or even minutes are expected
to be beyond all-atom MD for the next decade or longer.

To deal with various complex multiscale biological sys-
tems, a good starting point is to study some ‘model’ systems
as examples. Red blood cells (RBCs) and deoxyribonucleic
acids (DNAs) are good examples of biological systems with
multiple characteristic lengths and times. TheRBC is amodel
system for cell mechanics and biological membranes, while
theDNA is amodel system for biopolymers.Multiscale stud-
ies of RBCs span from the properties of membrane proteins
to whole cell deformation. Several known protein muta-
tions in the RBC membrane can result in altered mechanical
properties of RBCs, leading to diseases such as hereditary
spherocytosis [17]. For DNAs, the length scales span from
the nucleobase (∼1 Å) to the contour length (larger than
1 meter for the human genome DNA). The large variation
in these characteristic lengths presents a severe challenge
for bridging between continuum-based and atomistic-based
models. Recently, several mesoscale modeling approaches

emerged rapidly as ways to study these problems in which it
is forbidden to use all-atomMD to simulate the entire system,
while continuum-based modeling cannot reveal the mecha-
nisms related to molecular details [18,19]. In this review, we
will briefly describe different mesoscale models for studying
RBCs and DNAs.

2 Mesoscale modeling of red blood cell dynamics

Due to its simplemembrane structure, red blood cells (RBCs,
erythrocytes) have been studied as a model system for cell
biomechanics [13,14]. ARBChas no nucleus or other impor-
tant organelle. It consists of hemoglobin solution and a
biological composite membrane including a lipid bilayer and
a cortex cytoskeleton [33]. There are about 33,000 Junctional
Complexes (JCs) in the cytoskeleton, which is a basic protein
unit, consisting of an actin protofilament connected by four to
fix spectrin proteins. The cytoskeleton is attached to the lipid
bilayer through the transmembrane proteins such as band 3
andglycophorinC.Furthermore, the transmembraneproteins
can move freely in the lipid bilayer so that the cytoskeleton
can slide against the lipid bilayer. The interaction between
the lipid bilayer and the cytoskeleton is an important prob-
lem since it is related to physiological process such as RBC
aging [34] and pathological mechanisms such as bilayer loss
in hereditary spherocytosis [17], but this bilayer–cytoskeletal
interaction remains unquantified due to its small length
scale. It has been found that bilayer–cytoskeletal interactions
affect RBC membrane fluctuations [19] and tank-treading
motion in shear flow [35]. For example, different bilayer–
cytoskeletal tangential friction coefficients in diseased and
healthy RBCs can lead to different cytoskeleton density
distributions and different bilayer–cytoskeletal interaction
forces in shear flow [35]. In addition, only by account-
ing for bilayer–cytoskeletal vertical elastic interaction, the
magnitude of membrane fluctuations can be predicted [19].
However, the RBC membrane is considered as a single
continuum layer inmost existingmodels in the literature [36–
39].Recently continuum-based andparticle-basedmesoscale
models have been developed to consider different molec-
ular details of the RBC membrane [20–25,27–32,35], as
shown in Fig. 1. In the following, we will review three
different mesoscale approaches as examples, including a
three-level hierarchical multiscale continuum approach, a
two-component dissipative particle dynamics approach and
a two-component coarse-grained MD approach.

2.1 Two-component RBC model using three-level
hierarchical multiscale continuum method

Peng et al. have developed a three-level multiscale model
of RBCs and coupled it with a boundary element model to
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Fig. 1 Continuum-based and particle-based (also called, atomistic-
based) RBC models with different molecular details: One-component
continuum whole cell model [20], two-component continuum whole
cell model [21,22], one-component spectrin-level whole cell model
[23–25], two-component spectrin-levelwhole cellMODEL [26,27], 3D
junctional complex (JCs) model [28,29], and two-component coarse-
grained molecular-dynamics model [30–32]

study the dynamic response of RBCs in tube and shear flows
[21]. For the RBC membrane, we built a three-level multi-
scale model to simulate its viscoelastic behaviors at different
length scales, including single protein scale, protein complex
scale and cell scale. For the fluids surrounding the RBC, we
used a boundary element approach to study the fluid dynam-
ics based on the Stokes equation of viscous flow [22].

The dynamics ofRBCs involves physics at different length
scales. For example, in the whole cell level, RBCs may
undergo tank-treading motions in shear flow in the micro
meter scale [40,41]. In the protein complex scale, JCs of
RBCs may experience fluctuations due to mode switching
[28,42]. In the protein level, tension may induce spectrin
unfolding in the nanometer scale [28,43]. We developed a
multiscale framework to investigate the physics in different
length scales, including three models at three different length
scales, and coupled them together using a hierarchical mul-
tiscale approach, as shown in Fig. 2.
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actin

lipid 
bilayer

Spectrin
dimer

suspension 
complex

head-to-head 
association

outer layer 
(lipid bilayer)

inner layer (skeleton)

folded domains
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Fig. 2 Two-componentRBCmodel using three-level hierarchicalmul-
tiscale continuum method [21,22]

At Level I, Zhu and Asaro developed a model of spectrin
using Monte-Carlo simulation [29]. Spectrin is the major
RBC cytoskeleton protein that forms a triangular network.
Rief et al. applied AFM to stretch a single spectrin and found
that it can be modeled accurately using a nonlinear con-
stitutive model called worm-like chain (WLC) [23,24,43].
Besides that, it was found that if the spectrin is stretched
beyond its contour length, multiple protein domains may
unfold to increase the contour length. In order to cap-
ture the full mechanical behavior of the spectrin, Zhu and
Asaro took into account its domain unfolding feature by
employing a Monte-Carlo method, as the probability of the
unfolding is a function of the loading [29]. By simulating
the unfolding of the spectrin, Zhu and Asaro got consis-
tent force-displacement curves as in the AFM experiment
[43]. In addition, the effect of stretching rate is also quanti-
fied. After these force-displacement curves are obtained, the
information is passed as a database to the next level model
(Level II).

At Level II, Zhu et al. developed a 3D JC model with
molecular details using Brownian dynamics (BD), which is
a basic protein complex unit in the RBC cytoskeleton [28].
In the JC, an actin protofilament is associated with four to six
spectrins. Zhu et al. built an exact geometry model based on
the state-of-the-art understanding of the molecular structure
of a JC, including the binding sites between spectrins and
actins [44]. They simulated thermal fluctuations of the RBC
membrane using this model [28] and predicted the area and
shear moduli of the cytoskeleton, as functions of membrane
deformation [21,28], which can be passed to the next cell
level model (Level III).

At Level III, Peng et al. developed a whole cell model of
RBCs using FEM and considered the normal and tangential
interactions between the lipid bilayer and the cytoskele-
ton [21,22]. The cytoskeleton may slide against the lipid
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bilayer [45,46], since the cytoskeleton is connected to the
lipid bilayer through transmembrane proteins such as band
3 and glycophorin C, which can move freely within the lipid
bilayer. In order to describe the bilayer–cytoskeletal inter-
action accurately, we modeled the RBC membrane as two
distinct layers. We employed an inner layer to present the
cytoskeleton with finite area and shear stiffnesses, and neg-
ligible bending stiffness, and an outer layer to represent the
lipid bilayer with zero shear stiffness, huge area stiffness, and
significant bending stiffness. Vertical elastic interaction and
tangential viscous friction between the lipid bilayer and the
cytoskeleton are simulated using a contact algorithm based
on the penalty method [47]. The bilayer–cytoskeletal friction
coefficient is estimated based on the Stokes-Einstein relation
and experimentally measured diffusivities of band 3 and gly-
cophorin C in the lipid bilayer [48–50]. Reduced integration
shell elements based onMindlin theorywere used to simulate
both the outer and the inner layers [21].

Besides the elasticity, we also considered the viscosities of
the lipid bilayer and the cytoskeleton, which play significant
roles in dynamics processes such as tank treading. For exam-
ple, it has been demonstrated that without considering the
membrane viscosity, the predicted tank-treading frequency
cannot match the experimental measurement [22,51]. Differ-
ent from the existing study [51], we consider the viscosities
of the lipid bilayer and the cytoskeleton separately using a
generalizedVoigt–Kelvin stress–strain relation [14]. Further-
more, we modeled the sliding between the bilayer and the
skeleton as a viscous friction force. The viscous fluids sur-
rounding the cell are incorporated in the following boundary
element model of Stokes flow.

We applied a BEM to simulate the Stokes flows inside
and outside of the RBC and coupled it with FEM to study
the fluid-structure interaction.We used a staggered algorithm
with explicit time integration [22]. For the interface dynamics
in the Stokes flow with zero Reynolds number, we applied
the boundary integral equation [9] so that the velocity v f is
given as

v f (x0) = 2

1 + Λ
v̄ f (x0)

− 1

4πη1(Λ + 1)

∫∫
Γ f b

G(x, x0) · �t f (x)dΓ (x)

+ 1 − Λ

4π(1 + Λ)
−
∫∫

Γ f b
v f (x) · T(x, x0) · n(x)dΓ (x),

(1)

where � is the viscosity ratio, Γ f b is the membrane surface
and v̄ f is the prescribed undisturbed velocity field of the
shear flow. The vector �t f = t f,1 − t f,2 is the discontinuity
in the interfacial surface traction, where t f,1 is the traction in
the outside surfaceΓ f b,1 of the interface, and t f,2 is the trac-
tion in the inside surface Γ f b,2 of the interface. The surface

traction is related to the nodal force through the principle of
virtual work [52]. −

∫∫
denotes the principal value integration.

G is the Green’s function for velocity. Its components are

Gi j (x, x0) = δi j

|x − x0| + (xi − x0i )(x j − x0 j )

|x − x0|3 , (2)

where δi j is Kronecker’s delta. T is the Green’s function for
stress. It can be written as

Ti jk(x, x0) = −6
(xi − x0i )(x j − x0 j )(xk − x0k )

|x − x0|5 . (3)

Extensive validations have been conducted in each level
to verify the models, such as optical tweezers stretching
[21], micropipette aspiration [21], tank treading, and tum-
bling of RBCs in shear flow [22]. More importantly, the
effect of stress-free cytoskeleton state on the tank-treading
behaviors has been compared with the recent experiment in
detail [26,53,54]. Besides validations, we predicted corre-
lation between the occurrence of Sp unfolding and increase
in the mechanical load upon individual skeleton–bilayer pin-
ning points and related it to the vesiculation process [55]. The
simulation results also show that during tank treading, the
protein density variation is insignificant for healthy RBCs,
but significant for cells with a smaller bilayer–cytoskeletal
friction coefficient, whichmay be the case in hereditary sphe-
rocytosis [17]. We also predicted two different modes of
motions for RBCs in shear flow [35] and studied the effect
of stress-free state on the tank-treading motion [26,53,54].
We showed that the cell maintains its biconcave shape dur-
ing tank-treading motions under low shear rate flows, by
employing a spheroidal stress-free state in the cytoskeleton
[26]. Furthermore, we numerically confirmed the hypoth-
esis that, as the stress-free state approaches a sphere, the
threshold shear rates corresponding to the establishment of
tank treading decrease. By comparing with the experimental
measurements [53], our study suggests that the stress-free
state of RBCs is a spheroid that is close to a sphere, rather
than the biconcave shape applied in existing models [26]. In
addition, we also quantified the stability phase diagram of
different motion modes in high shear rate flows and explored
the effect of stress-free state on the phase diagram [54].

2.2 Two-component model of RBC membranes using
dissipative particle dynamics

Besides the three-level hierarchical multiscale model of
RBCs, Peng et al. also developed a DPD-based two-
component model of RBC membranes by modeling the
lipid bilayer and the cytoskeleton separately using two two-
dimensional triangulated networks with Nv DPD particles
[19]. We use DPD particles to model the fluids, which inter-
act with the DPD network representing the lipid bilayer. We
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applied the bounce-back condition to enforce the non-slip
condition between the bilayer and the fluids. In the follow-
ing, we will describe DPD method for simulating the fluids
first and then the details of the two-component RBC mem-
brane model.

2.2.1 Dissipative particle dynamics

DPD is a mesoscopic numerical technique, which was origi-
nally developed to simulate fluids and polymers [56–58]. In
the DPD simulations, fluids and polymers are represented by
N DPD particles, which interact with each other via pairwise
potentials and their motions follow Newton’s second law.
Different from classical molecular dynamics, a DPD particle
represents a cluster of atoms. Three kinds of pairwise inter-
action forces are applied between DPD particles i and j at
positions ri and r j , including conservative, dissipative, and
random forces. They are written as

FC
i j = ai jω(ri j )ei j , (4)

FD
i j = −γω2(ri j )(ei j ·vi j )ei j , (5)

FR
i j = σω(ri j )ζi j�t−1/2ei j , (6)

where ri j = ri − r j , ri j = |ri j |, ei j = ri j/ri j , and
vi j = vi − v j . The strengths of conservative, dissipative,
and random forces are specified by constants ai j , γ , and σ ,
respectively. �t is the time step size, and ζi j is a random
number with zero mean and unit variance. ω(ri j ) is a weight
function given by

ω
(
ri j

) =
{
1 − ri j/rc ri j < rc
0 ri j ≥ rc

(7)

where the cutoff radius is defined by rc. Due to the
dissipation-fluctuation theorem, the coefficients of random
and dissipative forces follow a relationship σ 2 = 2γ kBT ,
where kB is the Boltzmann constant and T is the tempera-
ture, so that the two forces act a thermostat. Furthermore, due
to the soft core interaction in the conservative force, we are
able to use much larger time steps than that in the MD sim-
ulations. In summary, DPD is efficient simulation technique
for modeling fluids and polymers.

2.2.2 Membrane viscoelasticity and bilayer–cytoskeletal
interactions of the two-component RBC model

TheRBCmembrane ismodeled by two different components
in the two-component DPD model, i.e., the lipid bilayer and
the cytoskeleton, as shown in Fig. 3. Each component is rep-
resented by a 2D triangular network with Nv DPD particles.
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Fig. 3 A Two-component DPD model of a RBC. B Local triangu-
lar networks of the two-component model. C Normal and tangential
interactions between the lipid bilayer and the cytoskeleton. D Physical
picture of the local bilayer–cytoskeletal interaction [19]

The total elastic energy of the RBC membrane is written as

U = Us +Ub +Ua+v +Uint, (8)

where Us is the cytoskeleton elastic energy, given by the
WLC potential and a repulsive power potential as

Us =
∑

j∈1...Ns

[
kBT lm(3x2j − 2x3j )

4p(1 − x j )
+ kp

(n − 1)ln−1
j

]
, (9)

where l j and lm are the spectrin natural length and contour
length, Ns is the number of spectrins, while x j = l j/ lm . p
is the persistence length, kB is the Boltzmann constant, T is
the temperature, and kp is the power term constant.

Ub is the elastic energy of the lipid bilayer,which iswritten
as

Ub =
∑

j∈1...Ns

kb
[
1 − cos(θ j − θ0)

]
, (10)

where kb is the bending coefficient and kb = 2kc/
√
3, where

kc is the bending stiffness of the bilayer. θ0 is the sponta-
neous angle and θ j is the instantaneous angle between two
adjacent triangles as shown in Fig. 3B. Furthermore,Ua+v is
the energy due to cell area and volume conservation, which
is written as

Ua+v =
∑

j∈1...Nt

kl(A j − A0)
2

2A0
+ kv(V tot − V tot

0 )2

2V tot
0

, (11)

where Nt is triangle number, A0 is the initial triangle area
and A j is the current triangle area as shown in Fig. 3B. V tot

0
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is the initial volume of a RBC and V tot is the current volume.
kl and kv are penalty constants.

In addition to the membrane elasticity, we also consider
the viscosities of the lipid bilayer and the cytoskeleton by
adding dissipative and random forces as

FD,k
i j = −γ T

k vi j − γ C
k (vi j · ei j )ei j , (12)

FR,k
i j �t = √

2kBT

(√
2γ T

k dWS
i j

+
√
3γ C

k − γ T
k
tr [dWi j ]

3
1
)

· ei j , (13)

where k = b, s stands for the lipid bilayer or the cytoskeleton,
respectively. γ T

k and γ C
k are dissipative coefficients with a

condition 3γ C
k > γ T

k ; ei j and vi j are the relative position

and velocity. dWS
i j = dWS

i j − tr [dWS
i j ]1/3, where dWi j

is the Wiener increment. The Wiener increment dWi j (t) =
Wi j (t+�t)−Wi j (t) over a time step�t is a randomvariable
drawn from a normal distribution with zero mean and a time-
step variance N [0,�t]. The membrane viscosities can be
obtained as

ηk = √
3γ T

k +
√
3γ C

k

4
. (14)

Viscosity values are taken from the literature [59].
To describe the bilayer–cytoskeletal interaction, we add

another term Uint as

Uint =
∑

j∈1...Nbs

kbs(d j − d j0)
2

2
, (15)

where kbs represents the elastic stiffness of the bonds between
the bilayer and the cytoskeleton, and Nbs is the number of
vertical bonds, including the bonds between the transmem-
brane proteins (band-3 and glycophorin C) and spectrins.
We simulate the bilayer–cytoskeletal interaction by a tangen-
tial friction force and a normal viscoelastic force as shown
in Fig. 3C, D. d j is current bond length; d j0 is the initial
bond length. Experiments show that d j0 ≈ 30 nm [60]. We
employed a master–slave penalty contact algorithm to cal-
culate the bilayer–cytoskeletal interaction force [47]. The
elastic interaction force on a cytoskeletal vertex is given as

fEj = kbs(d j − d j0)n j , (16)

where n j is the normal unit vector. We also add a vertical
damping force as

fDj = −cbs(v j · n j )n j , (17)

where v j is the relative velocity and cbs is the damping coeffi-
cient. The bilayer–cytoskeletal viscous friction force is given
as

f Fj = − fbs[v j − (v j · n j )n j ], (18)

where fbs is the friction coefficient.
To keep the constant temperature, we add another random

force [61] as

f Rj �t = √
2kBT

(√
2 fbsdWA

i j + √
3cbs

tr [dWi j ]
3

1
)

· n j ,

(19)

where dWA
i j = (dWi j −dW j i )/2 is the anti-symmetric part

of the Wiener increment.
To summarize, the total bilayer–cytoskeletal interaction

force is given as

f intj = fEj + fDj + f Fj + f Rj . (20)

The two-component RBC DPD model has been validated
against more than six different experiments by using the
same set of input parameters, such as micropipette aspira-
tion, membrane fluctuations, tank-treading motion in shear
flow, bilayer tethering in channel flow, passage through
microfluidic channel, and twisting torque cytometry. More
importantly, based on this two-component DPD model, sev-
eral controversies and issues in RBC mechanics have been
resolved. The micropipette aspiration experiments of mea-
suring both the area moduli of the cytoskeleton (ks) and the
lipid bilayer (kl )were simulated accurately using the same set
of input parameters [62–64], although these two area mod-
uli differ by five orders of magnitude. It was found that due
to the explicit incorporation of bilayer–cytoskeletal elastic
interaction, the two-component model matches the ther-
mal fluctuations experiments better than the one-component
model [65]. It was also found that the dependence of the
tank-treading frequency on the shear rate follows a linear
relationship for a narrow channel but a nonlinear one for
a wide channel, which resolves a controversy in the liter-
ature [66]. It has been demonstrated that the tank-treading
motion is too fast for the bilayer–cytoskeletal slip to occur
for healthy RBCs [45,46]. The bilayer–cytoskeletal interac-
tion strength was predicted by simulating the RBC tethering
in the channel flow experiment [67]. In addition, using this
two-component model, Li et al. also studied RBC deforma-
bility in a small microfluidic channel and investigated the
membrane mechanical properties [68]. The twisting torque
cytometry was simulated and it was found that the predicted
rheological properties of the RBC membrane match well
with experimental measurements. In these experiments, Li
et al. also showed that bilayer–cytoskeletal interactions are
important for cell membrane mechanical, rheological, and
dynamical properties [68].
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2.3 Two-component RBC model using coarse-grained
molecular dynamics

In a shorter length scale, Li and Lykotrafitis developed a two-
component coarse-grained MD model for RBC membranes
by adopting the one-particle-thick solvent-free model [75]
for the lipid bilayer and a WLC network [30] or detailed
free-jointed chain model [31] for the cytoskeleton. Zhang
et al. also applied a similar coarse-grained model to study
the stiffening effects of nanoscale knobs on human RBCs
infected with Plasmodium falciparum malaria parasite [69].

In the one-particle-thick solvent-free model of the lipid
bilayer, the following interaction potential function was
adopted to enforce the DPD particles in a monolayer to form
a one-particle-thick layer without losing particles,

u(ni ,n j , xi j ) = uR(ri j ) + uA(ri j )

+α[a(ni ,n j , xi j ) − 1]uA(ri j ) (21)

where ri j ≡ |xi j |, xi j is the relative position vector between
two particles, and ni is the unit directional vector of each
particle. The attractive and repulsive potentials uA(ri j ) and
uR(ri j ) are given by

⎧⎪⎪⎨
⎪⎪⎩

uR(ri j ) = ε
(
rc−ri j
rc−req

)8
, ri j < rc

uA(ri j ) = −2ε
(
rc−ri j
rc−req

)4
, ri j < rc

uR(ri j ) = uA(r) = 0, ri j ≥ rc

(22)

where the coefficient α = 1.55 is specified to maintain the
correct bending stiffness, ε = 4.54kBT is the depth of the
energy well, rc = 2.6d is the cut off length, req = 21/6d is
the equilibrium length, and d is the unit of length.

a = (ni × xi j ) · (n j × xi j )

+ sin θ0(n j − ni ) · xi j − sin2 θ0. (23)

θ0 is the spontaneous angle associated with the bilayer spon-
taneous curvature.

The translational and rotational motions are described by

mi ẍi = −∂Vi
∂xi

, (24)

Ii n̈i = −∂Vi
∂ni

+
(

∂Vi
∂ni

· ni
)
ni − Ii (ṅi · ṅi )ni , (25)

where Vi = ∑N
j=1 u(xi j ,ni ,n j ). Ii and mi are the inertial

moment and mass of a particle, and xi is the position vector
of a particle. Li and Lykotrafitis applied similar interaction
potentials between the lipid particle and band 3 particle.

To incorporate the cytoskeleton of spectrin, Li and Lyko-
trafitis first applied WLC model to simulate the spectrin

between the band 3 and actin in the one-particle-thick model
[30], each of which are represented by a CG particle. In
a refined model, Li and Lykotrafitis employed 39 particles
connected by unbreakable springs to represent the spectrin
instead of a single WLC chain and also considered the inter-
action between the spectrins and the lipids by LJ potentials
[31], as shown in Fig. 4.

The shear modulus predicted by their model is consis-
tent with the experimental measurement [30]. The model
has also been validated by comparing the results with exper-
imentally measured viscosity and thermal fluctuations of
the RBC membrane [31]. Li and Lykotrafitis found that the
RBC membrane bending stiffness and the transmembrane
protein diffusivity can be accurately captured by adjust-
ing the interaction potential parameters [30]. They found
that at higher strain rates the shear stress is mainly deter-
mined by the viscosity of the lipid bilayer, and at lower
shear strain rates the shear stress is mainly due to the
cytoskeleton. Using the extended model [31], they discov-
ered that the pressure imposed by the cytoskeleton on the
lipid bilayer is reduced due to the defects of the connec-
tions between the cytoskeleton and the lipid bilayer, which
might occur in spherocytes. More importantly, by compari-
son, they showed that this pressure is even more significantly
reduced if there are defects in the dimer-dimer association
of a spectrin filament, which might happen in elliptocytes
[17]. They also explored the attractive forces between the

Fig. 4 Two-component RBCmodel using coarse-grainedMD [30,31].
(A) The structure of RBCmembranes. The sphereswith different colors
represent different components: junctional complex (red), lipid particle
(blue), spectrin particle (gray) glycophorin particle (black), fixed band-
3 (yellow), and mobile band-3 (green). (B) Undeformed membrane in
topview. (C) Undeformed membrane in side view. (D) Deformed mem-
brane in side view. (Copied from [31], Colour figure online)
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lipid bilayer and the spectrin filaments and showed that it
leads to increased pressure from the cytoskeleton to the lipid
bilayer.

2.4 Comparison of different RBC models and related
experiments

The main features and applications of some existing meso-
scale RBC models are summarized in Table 1. The main
differences are the molecular details considered and the
length scales these model can reach. The two-component
CGmodel focused on the detailed bilayer–cytoskeletal inter-
action and transmembrane protein diffusion, but it is too
expensive to employ it to study a whole cell with current
methodology. The two-component DPD model studied the
whole cell behavior and explore the bilayer–cytoskeletal in a
simplified way. The three-level multiscale approach is devel-
oped to bridge three models in different length scale, but due
to the information passing, some information is lost, such as
thermal fluctuations in the whole cell level.

There are still plenty of room to improve thesemodels. For
example, only one-way coupling has been done for the three-
level multiscale RBC model, and two-way coupling can be
added to study how the deformation in the macroscale can
influence the dynamics of the proteins in the microscale. In
addition, future effort will be put on how to improve the effi-
ciency of the two-component CGMD RBC model in order
to apply it in the whole cell scale and coupled it with fluid
motion. Moreover, smoothed dissipative particle dynamics
(SDPD) and smoothed particles hydrodynamics (SPH) have
been also applied to study RBCs models [76–78]. Com-
pared to conventional DPD, SDPD adopts advantages from
smoothed particles hydrodynamics (SPH) [79], such as ther-
mal consistency and specification of viscosity.

Since the RBC is a model system for cell mechanics and
biological membranes, RBC models can be applied in other
systems as well. For example, recently we extended the two-
component RBC DPD model to study the blood vessel walls
by considering the isotropic matrix and the anisotropic col-
lagen fibers separately [80]. Furthermore, we can also apply
RBC models to study the lipid bilayer and the actin cor-
tex network or the intermediate filament network in general
eukaryotic cells, because some of them share similar struc-
tures as the spectrin network of RBCs, such as the auditory
outer hair cells and the nucleus lamina [33,81].

3 Mesoscale modeling of DNA dynamics

Mesoscale modeling of DNA has granted insights into DNA
mechanics, conformation, and dynamics in free solution [82–
94] and for DNA in nanoslits [95–111] and nanochannels
[112–124]. In particular, there has been significant interest
in the validation of polymer theory using DNA as a model
polymer due to ease of direct observation of single DNA
molecules and its highly monodisperse nature [104,125–
144], with potential applications in genome analysis and
sequencing [145–150]. Here, we will focus on a challenging
problem for mesoscale coarse-grained DNA models : DNA
translocation through a nanopore with applications for DNA
separation and sequencing.

It is challenging to accurately model DNA molecules in
solution due to the need to simultaneously resolve long-range
interactions (i.e., hydrodynamic and electrostatic) and short-
range interactions (i.e., local rigidity, hydrophobic, entropic).
DNA properties of interest can span several orders of mag-
nitudes in terms of length and time as shown in Fig. 5. The
computational cost of calculating the continuum hydrody-

Table 1 Comparison of RBC
models

Models Main characteristics Applications

Three-level
multiscale [21,22]

FEM, LD, and MC, spanning from
protein to cell

Micropipette vesiculation, dynamics of
JCs, spectrin unfolding

One-component
DPD [25,51]

Whole cell, coupled with fluids,
systematic coarse-graining

Thermal fluctuations, tank treading,
microfluidics

Two-component
DPD [19,68]

Bilayer–cytoskeletal tangential and
vertical interaction in molecular
level, whole cell

Bilayer–cytoskeletal slip, bilayer
tethering, thermal fluctuations

Two-component CG
[30,31,69]

One-particle-thick bilayer model,
Small piece of membrane

Transmembrane protein diffusion, effects
of protein deficiencies, budding of
bilayer

Two-component
MCPD [27]

Coarse-graining, whole cell Tube flow, tank treading

LBM [70,71] Fluid–structure interaction, whole
cell

Blood rheology, margination

Continuum
[20,37,72–74]

Uniform property, no molecular
details

Tank treading, optical tweezers stretching
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Fig. 5 The characteristic length
scales of a DNA molecule range
from angstrom to millimeters

namic field by solving the non-linearNavier–Stokes equation
is typically of order O(N 2.25), where N is the number of
mesoscale beads in the system, rendering computation of
large systems prohibitively expensive. Recently, fully cou-
pled mesoscale methods such as lattice Boltzmann (LB)
[151,152], fast-multipole integration [153,154], andparticle-
based methods such as dissipative particle dynamics (DPD)
[155,156], and multi-particle collision dynamics (MPCD)
[85,157] have demonstrated O(N log (N )) efficiency for
capturing long-range interactions such as hydrodynamics
interaction. These developments have spurred new interests
in the investigation of DNA dynamics in microfluidic flow
and other systems.

3.1 Coarse-grained DNA models

Mesoscale models of DNA dynamics in free solution often
neglect DNA stiffness and sequence specificity, which are
very important for understanding DNA properties in nano-
confinement. There are two major bottlenecks for modeling
DNA dynamics in nanoscale confinement: (1) the large num-
ber of degrees of freedom needed to capture short-range
interactions and (2) the high cost to accurately calculate
the long-range electrostatic and hydrodynamic forces. Novel
multiscale methods that will allow efficient computation of
long-range (hydrodynamic and electrostatic) and short-range
(vanderWaals) forces are needed tounderstandDNAdynam-
ics in nanochannels and nanopores.

Efficient computation of DNA properties in different sys-
tems requires choosing a multiscale DNAmodel by a careful
examination of the important physical interactions, as shown
in Fig. 6. To model the properties of large DNA molecules
in free solution, a flexible bead-spring polymer model cou-
pled with a continuum fluid model may be used to accurately
capture long-timeDNAdynamics [91,158,159]. Each spring
represents a large number ofKuhn segments. For small spring
extension in the linear force-extension regime such as DNA
equilibrium properties, the harmonic or finitely extensible
non-linear elastic spring potential could accurately capture
the extensional force [160,161]. However, for large spring
extension such as DNA under strong shear or extensional

Fig. 6 Different scales of DNA model from a continuous string to
atomistic

deformation, the WLC model is needed to accurately cap-
ture the DNA dynamics [82,162].

In principle, a fully flexible chain could be used to
model DNA properties of millimeter length scales. How-
ever, this inherently neglects intermolecular physics for
length scales of order Kuhn length (≈100 nm) and smaller
due to DNA backbone stiffness. For DNA in nanochan-
nels, DNA semi-flexibility due to the double-helix structure
must be accounted for. A coarse-grained model that includes
inter-segment bending potential to correspond to the DNA
persistence length may capture DNA rigidity and the force-
extension relation [106]. Recent studies have shown that
the semi-flexible chain model captures DNA dynamics in
nanoslits and nanochannels [101–103,107–109,119,121–
123]. However, the spring length of the semi-flexible chain
is typically of length 2–10 nm, and the model is most use-
ful for modeling shorter DNAmolecules with contour length
of order 10 µ m due to the computational cost. In order to
studyDNAdynamics in nanopores, themodelmust be able to
capture nucleotide-pore and base–base interactions. Models
such as the 3-site-per-nucleotide DNA model [86,163,164]
have been shown to capture DNA hybridization kinetics and
alsoDNA structural rigidity. It may be a promising start point
to accurately model sequence-dependent DNA translocation
through a nanopore.

3.2 Mesoscale modeling of DNA/polymer translocation
through nanopores

Nanopore translocation has been extensively studied due to
its promising application for rapid, label-free, and real-time
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Table 2 Comparison of DNA models

Models Main characteristics Applications

All-atom MD [176,177] Capturing atomic details of up to 10nm ds-DNA
segments

Current signature of different base pairs

3PN [86,163,164] Differentiate coarse-grained nucleic acids of up to
100nm ds-DNA segments

Studies of the dynamics of DNA hybridization and
structure, properties of single base-pair mismatch,
DNA-protein interactions

CG semi-flexible polymer
[106,225,226]

Capture the physics of flow-polymer interaction on
length scales 5 nm or greater without single nucleic
acid resolution

Studies of DNA dynamics and conformation in
micro- and nanochannels, DNA-protein
interactions

CG flexible polymer
[83,88,159,180]

Capture the physics of flow-polymer interaction on
length scales 100 nm or greater without single nucleic
acid resolution

Studies of DNA dynamics and conformation in
microchannels

DPD [156,187,227] Coarse-grained polymer model accounting for
hydrodynamic interactions

DNA dynamics in micro-flow

LB [152,202–205] Coarse-grained polymer model accounting for
hydrodynamic interactions

DNA dynamics in flow

Continuum/FEM [111] Coarse-grained polymer model, flow-polymer
interaction

DNA dynamics in flow

DNAsequencing [165–171]. The length scale of interest cov-
ers that of a single nucleotide with size of s ∼ 0.34 nm
to DNA persistence length (∼50 nm) to that of the DNA
contour length with N bases (Ns can be more than several
μm), as illustrated in Fig. 5. Similarly, the time scale ranges
from that of the nucleotide diffusion time (∼ s2 fc/kBT ,
where fc is the friction coefficient) to the translocation time
(∼contour length/translocation velocity; translocation veloc-
ity ∼ electrophoretic force/friction coefficient). Up to six
orders of magnitudes of variation in characteristic length
and time need to be captured, which is a severe challenge
for current computational capabilities. In order to model
DNA translocation through a nanopore, DNA interactions
with the nanopore itself must be accurately included, and
thus the smallest characteristic length scale must be smaller
than the nanopore size. The conformation of DNA segments
vary from rod-like (<50 nm) to coil-like. Muthukumar first
analyzed the translocation of a string-like polymer through
a hole and found that the translocation time ∼N 2 without
external force (thus diffusion dominated) and ∼N for driven
translocation [171]. More recent coarse-grained models that
include hydrodynamic interactions and more detailed DNA
structure have found slightly different power-law exponents
[172–175]. Thus, different qualitative trends in the translo-
cation dynamics are expected with the inclusion of more
molecular details and hydrodynamic interactions.

Even so, all-atom modeling of even a short DNA frag-
ments with only one persistence length (≈50 nm) in solution
would still be prohibitively expensive, requiring more than
108 atoms. Bhattacharya et al. applied all-atom MD to study
DNA translocation through protein nanopore Mycobacte-
ria smegmatic porin A (MspA). However, it takes days for

using thousands of CPUs to simulate the translocation of
ten nucleotides through a nanopore for 1 μs [176]. Li et
al. also applied MD to study the translocation of a single-
stranded DNA through nanopores on graphene membranes
[177]. Another challenge due to the cost of performing one
set of MD simulations is that it is difficult to collect large
samples for statistical evaluation. On the other hand, coarse-
grained models have been employed extensively to study
polymer translocation through a pore [174,175,178–183].
However, it remains challenging to accurately incorporate
nucleotide characteristics, hydrodynamic interactions, elec-
trostatic interactions, and DNA-pore interactions together in
a completemodel. In order to overcome these challenges, two
recently developed techniques, dissipative particle dynamics
(DPD) and latticeBoltzmann (LB), are discussed here and the
main characteristics are summarized in Table 2. The solvent
modeling, DPD, LB, and continuummodeling are separately
consistent with the chosen polymer model.

3.2.1 Modeling of DNA/polymer translocation using
dissipative particle dynamics

In recent years, DPD has been applied to study polymer
translocation through a nanopore. DPD was demonstrated
to be efficient in modeling polymer translocation [183–185].
Kapahnke et al. first employed 3D DPD simulation to inves-
tigate the translocation of a polymer driven by a solvent
quality contrast across different sides of a membrane [185].
Duong-Hong et al. applied DPD to study the combined DNA
electrophoretic flow and electroosmotic flow (EOF) in nano-
fluidic devices and considered the EOF effect by utilizing
a slip velocity as the wall boundary [186]. They also com-
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pared theDPD simulation results with the experiments [186].
In order to consider explicitly the electrostatic interactions
between particles and avoid the singularity caused by the
Coulomb attraction between particles, hard-core interactions
have often been employed to prevent [156,187]. For exam-
ple, in addition to the typical DPD interactions shown in Eqs.
4–6, Li et al. used hard-coreMorse interaction and a screened
Coulombic interaction in the following form [156]:

Fi =
∑
i �= j

(
FC
i j + FD

i j + FR
i j + FM

i j + FS
i j + FCoulomb

i j

)
+ Fext

i j ,

(26)

where FC
i j , F

D
i j , and FR

i j are the DPD forces shown in Eqs.

4–6. FCoulomb
i j is the electrostatic interaction forcem, and FM

i j
is a repulsive force for preventing overlapping of ions and
counterions. Fext

i j is the external force field.
The bond interaction between DNA segments is given as

Fs
i j = kbond

(
1 − ri j

r0

)
ni j , (27)

where kbond is the strength of the harmonic bond and ni j is
the unit direction vector of the bond. ri j is the bond length,
and r0 is the initial bond length.

Based on the DPD approach, He et al. [184] found that the
translocation time also scales with the force field strength as
τ ∼ E−0.48±0.01. For unforced translocation, it was found
that the translocation time follows a scaling τ ∼ Nβ with β

approximate to 2.24 [185]. Guo et al. observed single-file and
double-folded translocation processes by studying the con-
formational changes of the polymer during the translocation
[188] and showed that the average translocation time steadily
decreases with the increase of fluid flux. It was also found
that the chain rigidity plays an important role on the dynam-
ics of polymer chain translocation [189]. Feng et al. applied
DPD with two different dissipative radii in three dimensions
and compared with the results of Langevin dynamics (LD)
method [187]. Their results showed that the scaling relation-
ship between the translocation time and the polymer chain
length is τ ∼ N 0.94 by DPD method with small dissipative
radius and τ ∼ N 0.98 with large dissipative radius. It was also
found that the translocation time predicted by LD is larger
than that by DPD method. Li et al. showed that the aver-
age translocation time τ scales with the polymer length N as
τ ∼ Nβ [190], where β depends on the solvent quality [156]
and could be adjusted by varying the repulsive parameter aPS
between the polymer and the solvent in Eq. 4 as

aPS = ai j (1 + ε), (28)

where ε is a parameter that determines the solvent qual-
ity. Poor solvent quality can be modeled with ε > 0, and

good solvent quality is modeled with ε < 0. A comparative
study of DPD and modified LD was carried out for polymer
translocation [191], and it determined that the inclusion of
hydrodynamic interactions increases the translocation prob-
ability and decreases the translocation time. It was also found
that the wall interfacial property plays an important role in
the dynamics of polymer translocation. Uniform hydrosta-
tic force and uniform electrostatic force have been applied
to study the polymer translocation, and it was found that
the scaling correlations τ ∼ E−ξ and τ ∼ Nβ are valid
only for coil-like chains [155]. The translocation process of
star polymers through a nanochannel was investigated, and
it was found that the translocation time shows a power-law
dependence on the number of arms outside the channel and
very weakly dependent on the number of arms in the channel
[192].

3.2.2 Simulation of electrostatic effect on DNA
translocation using dissipative particle dynamics

There are different ways to consider the electrostatic effect
in DNA translocation in the DPD simulations. One way is to
considered the electroosmotic flow effect by utilizing a slip
velocity as the wall boundary [186,193]. But if the electro-
static interaction between particles are explicitly calculated,
as shown in Fig. 7, there are two major challenges. The first
challenging is that a soft core potential is usually used in
the mesoscale modeling methods such as DPD, so that the
ion and counterion may form a cluster pair due to the strong
electrostatic interaction since there is no hard-core interac-
tion to prevent overlap of ions and counterions [194,195].

Fig. 7 Schematic representation of the DPD simulation model for a
polymer chain and a narrow pore. In this figure, the neutral gray, light
gray, and black color circles represent the polymer, solvent, and wall
particles, respectively. In addition, the dark gray color circles represent
the counterions. (Copied from [156])
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The second challenge is the computational cost due to the
long-range feature of the electrostatic interaction.

A simple way to overcome these two challenges is to use a
screened Coulombic interaction and another hard-core inter-
action to prevent overlap of the particles, as did in the work
by Li et al. [156], but significant error may be caused by these
assumptions. A screened Coulombic interaction is employed
as

FCoulumb
i j = qiq j lBe−κri j

ri j

(
1

ri j
+ κ

)
ni j , (29)

where lB = e2c/kBT ε is the Bjerrum length, κ is the inverse
Debye length, and qi and q j are charges. In addition, a cut off
length is defined so that this screened Coulombic interaction
is only considered within this cut off distance. A hard-core
Morse potential is applied to prevent ion clustering, which is
given as

FM
i j = 2Deα

[
e2α(2rs−ri j ) − eα(2rs−ri j )

]
ni j , (30)

where De is the interaction coefficient, α characterizes the
interaction range, and rs is the equilibrium length. Hard-core
potential similar to Morse potential can be also used. For
example, Yong et al. recently applied LJ potential to prevent
ion clustering in studying the translocation time dependence
on channel length [196]. However, since the advantage of
DPD is that much larger time step can be used than MD
because of its soft core interaction, this advantage may be
diminished if a hard-core potential is employed in DPD.

Instead of using a hard-core potential, Groot applied the
‘smeared charge’ model to prevent the clustering of oppo-
sitely charged DPD particles [195]. The charge is distributed
as a linear symmetric cloud with decreasing density as

ρ(r) = 3

πr3e

(
1 − r

re

)
, (31)

where re is the smearing radius and is usually set to re =
1.6rc ,where rc is the cut off radius in DPD. The electrostatic
potential between these two charge beads is approximately
given by

4πreu(r)

Γ rc

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

52
35 − 4

5

(
rrc
re

)2 + 2
5

(
rrc
re

)4 − 0.136
(
rrc
re

)5.145
, r < re/rc

re
rrc

− 3.21
(
1 − rrc

2re

)6
, re/rc < r < 2re/rc

re
rrc

, r > 2re/rc

(32)

where Γ = e2/(kBT ε0εr rc) is the coupling constant, e is
the elementary charge, and ε0 and εr are absolute and rela-
tive electric permittivities. The charge is then applied on a

grid, and the electrostatic field is solved locally by using a
version of particle–particle particle-mesh (PPPM) algorithm
by Becker et al. [197].Yang et al. applied a similar method
to study the translocation by modeling explicit counterions
and the solvent quality in a computationally efficient way
and considered two different driving forces [155].

Gonzalez-Melchor et al. [198] applied aSlater-type charge
density to consider the charge distribution around a particle
as

ρ(r) = q

πλ3
e−2r/λ, (33)

where λ is the decay length of the charge.
The corresponding interaction potential between two

charged particles is given as

4πreu(r)

Γ rc
= 1

r

[
1 − (1 + βr)e−2βr ], (34)

where β = rc/λ. To match Eq. 32 at r = 0, we will have
β = 52/(35re).

More importantly, they applied Ewald sum method to
calculate the long-range interaction. Recently Wang et al.
applied a non-uniform FFT-based Ewald summation method
to calculate the long-range interaction based on Slater-type
charge density inDPD simulations [199] and investigated the
dendrimer-lipid interactions [200].

3.2.3 Modeling of DNA/polymer translocation using lattice
Boltzmann method

Another popular methodology to model polymer translo-
cation is to combine a coarse-grained model of particle
dynamics [160] with Eulerian lattice Boltzmann (LB) fluid
[201–205]. The particle and fluid can be coupled through
the immersed boundary method (IB) or the bounce-back
boundary condition [206–210]. The LB–IBmethod has been
shown to capture the physical characteristics of polymer and
particle deformation in shear flow, inter-particle hydrody-
namic forces, and the near-wall hydrodynamic field [116,
118,202,207,211–213]. Direct comparisons with experi-
mental measurements of DNA diffusivity and conformation
in micro- and nanoslits have verified that LB accurately cap-
tures how DNA properties are affected by nano-confinement
[136,214]. LB has also been shown to accurately predict
DNA density distribution in microchannels [215].

In order for LB to resolve solvent hydrodynamic interac-
tions, the time between solvent particle collisions must be
very short compared to the time for fluid hydrodynamics to
propagate in the system, so the mean free path of the solvent
is much smaller than the system size, i.e., the Knudsen num-
ber Kn = λ/L << 1, where λ is the mean free path and
L is the representative physical length scale of the system.

123



Comp. Part. Mech. (2015) 2:339–357 351

Microfluidic systems are well suited for LB modeling as the
dominant length scale is µ m, while the mean free path of
water molecules is on the scale of nm. The validity of LB
in the relevant parameter regimes is addressed in the con-
text of a coarse-grained bead-spring model of DNA, which
appears to satisfy that criterion. In addition, theSchmidt num-
ber (Sc = ν/Dm), the ratio between the kinematic viscosity
ν = ρ/η (ρ is the fluid density and η is the fluid viscosity)
and the coarse-grained bead diffusivity Dm , must be large so
that the fluid propagates hydrodynamic interactions between
beads much faster than the beads can diffuse. For molecules
undergoing microfluidic flow, the competition between the
inertial transport and viscous transport of the fluid is char-
acterized by the Reynolds number Re= ρUH/η, which is
usually very small, whereU is the flow velocity and H is the
channel dimension.

LB is carried out on a three-dimensional cubic lattice with
19 discrete velocities (the D3Q19 model). The lattice spac-
ing is �x , the kinematic viscosity is ν=η/ρ=1/6[�x2/�τ ],
and �τ is the LB time step. Details of the LB method can
be found in recent reviews [202,208,209,216,217]. The
19 discrete velocities ci are given by the following vectors:
(0, 0, 0), (± 1, 0, 0), (0, ± 1, 0), (0, 0,± 1), (± 1,± 1, 0),
(±1, 0,±1), (0,±1,±1). The magnitudes of the velocities
are ci = |ci | = 0, 1,

√
2. The lattice simulation has grid

size �x and time step �t . The maximum velocity in the
simulation is the speed of sound cs = �x/�t . The veloc-
ity distribution function ni (r, t) gives the fluid population
with the velocity ci at position r at time t . At equilibrium,
the velocity distribution functions can be represented as a
second-order expansion of the Maxwell–Boltzmann distrib-
ution, given by

neqi (r, t) = ρaci (1 + (ci · u)/c2s

+uu : (cici − c2s I)/(2c
4
s )), (35)

ρ =
∑

neqi , (36)

ρu =
∑

ci · neqi , (37)

Π = ρ
(
uu + c2s I

)
=

∑
neqi · cici , (38)

∑
aci ciαciβciγ ciδ = c4s (δαβδγ δ + δαγ δβδ + δαδδβγ ). (39)

The indices α, β, γ, and δ denote axis x, y, and z. u is
the local velocity and the coefficients aci are determined by
satisfying the equilibrium conditions and the isotropy con-
dition in Eq. 35. For the D3Q19 system, a0 = 1/3, a1 =
1/18, a

√
2 = 1/36. In terms of the fluid hydrodynamic prop-

erties, the velocity distribution functions are transformed to
the hydrodynamic moments, Mq = m · n, where Mq is the
qth moment of n = (n0, n1, . . . , n18), andm is the transfor-
mation matrix. The 19 moments of the velocity distribution
function are the density ρ, the momentum density j = ρu,

the momentum fluxΠ = ρ(uu+c2s I), and the kinetic energy
flux that conserve energy (‘ghost’ moments). At each time
step, the fluid particles undergo local collision at the lattice
site, and the velocity distribution functions evolve as

ni (r + cidt, t + dt) = ni (r, t) + Li j [n j (r, t) − neqj (r, t)],
(40)

where L is a collision operator for dissipation due to fluid
particle collisions such that the fluid always relaxes toward
the equilibrium distribution. Local dissipation of the fluid
momentum is justified if the particle mean free path is much
shorter than the lattice size, i.e., Kn << 1. For small Kn and
Mach number, Eq. 35 has been shown to be equivalent to the
Navier–Stokes equation.

Hydrodynamic interactions between the DNA segments
can be captured with the exchange and propagation of fric-
tional momentum between the fluid and the polymer [202,
213]. Each bead on the polymer experiences a friction force

F f = −ζ
[
ub(rb) − u f (rb)

]
, (41)

where ub(rb) and u f (rb) are the bead and fluid velocity at the
bead position rb, respectively, and ζ is the bead friction coef-
ficient. The fluid velocity at position rb is determined by a
trilinear interpolation of the fluid velocity on the neighboring
lattice points nn that enclose rb, u f (rb) = ∑

r∈nn wru(r),
where the weights wr are the coefficients of the normal-
ized linear Lagrange interpolation polynomial. The frictional
momentum density �j = −F f δt/�x3 is transferred to the
fluid.

With the assumptions involved in LB and IB, systematic
errors can arise due to fluid compressibility and the momen-
tum transfer between the particle and the fluid. With the
immersed boundary method, the no-slip boundary condition
is imposed on the particle surface, and the friction momen-
tum is calculated based on first-order Lagrange interpolation
of the fluid velocity at the bead position from the lattice
fluid velocity. Thus, the accuracy of momentum coupling
is of O(�x2). Furthermore, the fluid velocity from LB is of
O(�x2) accuracy.

Reboux et al. applied a coarse-grained model to solve the
electrokinetic equations at the Poisson–Boltzmann level for
the microions and coupled it to a LB equation for the solvent
hydrodynamics to study DNA translocation [218]. Fyta et al.
studied the problem of polymer fast translocation through
a nanopore [151]. Melchionna et al. investigated the prob-
ability distributions of the translocation time of the DNA
through the nanopore by adopting various initial configura-
tions and lengths [219,220]. Izmitli studied the electric-field
driven translocation of 21–210 µm DNA with and without
hydrodynamic interactions and found that the effect of hydro-
dynamic interactions is local and the initial configuration of
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the molecules is much more important in determining the
dynamics of DNA is for fast translocation processes [172].
It was also found that the coupling of the correlated molecu-
lar motion to hydrodynamics causes significant acceleration
of the translocation process [152], and wide pores can host
a larger number of multiple biopolymer segments, as com-
pared to smaller pores [221]. In addition, Alapati et al. found
that translocation velocity mainly depends upon the applied
potential difference rather than upon the electric field inside
the nanopores [222–224].

4 Challenges and future directions

Although both RBCs and DNAs have been studied exten-
sively using various computational methods, some important
questions still remain unanswered, especially due to the cor-
relation between physical and chemical processes in various
length scales. For example, the stress-free shape of RBCs is
not completely understood [53], and more experiments are
required to quantify the exact stress-free state ofRBCs,which
is closely related to the biconcave resting shape [26,54],
which is the first of eight mysteries about RBC proposed
by Hoffman [228]. More importantly, how the membrane
protein mutations lead to RBC diseases such as hereditary
spherocytosis and elliptocytosis remain unclear. This prob-
lem has been explored using coarse-grained MD for a small
piece of membrane [30,31], but currently it is computation-
ally prohibitive to extend this model to study a whole RBC. It
is also a challenge to simulate the bilayer vesiculation process
in RBC aging and RBC diseases using existing models, since
it involves topological changes of the lipid bilayer. It can be
done in a small scale [31], but not in the cell scale. Fur-
thermore, chemical reaction processes such as binding of
ATP to the cytoskeleton [229] and polymerization of abnor-
mal hemoglobin in sickle cell disease [230–232] have not
been accurately connected to the mechanical models yet. It
is critical to connect biophysical models and chemical kinet-
ics models for a better understanding of RBC physiology,
such as RBC’s role in relaxing capillaries for improved blood
perfusion.

For modeling of DNA translocation through nanopore,
one of the critical issues is to identify the variation of electric
current signature for different base pairs for the purpose of
sequencing. Although mesoscale modeling approaches such
as DPD and LB can be used to capture DNA dynamics on
length scales of a few nanometers, several challenges remain.
The most obvious of which is the high computational cost of
modeling even small systems. Advances in algorithm, par-
allelization, or GPU-accelerated methods may be explored
to reduce the computational time. Another challenge is in
determining how to incorporate sufficient molecular details
while maintain the advantages of coarse-grained modeling.

Computational modeling research will continue to test the
predictions of different levels of molecular coarse-graining
to validate the model predictions. In addition, a common dif-
ficulty for both DPD and LB is to match the ratio between
the fluid momentum diffusion and the coarse-grained bead
diffusion (Schmidt number Sc) between the coarse-grained
and the molecular systems. In the case of DPD, the Schmidt
number is about 1000 times lower than the actual physical
value of water. This may introduce computational artifacts
in the simulation of a dynamic nonequilibrium process such
as DNA translocation through a nanopore using DPD and
LB. As with all computational results of real systems, results
and predictions need to be thoroughly and rigorously tested
against real observations. Despite these challenges, impor-
tant new insights of dynamic mechanisms may be gained
from the coarse-grained modeling of DNA and RBC for
the appropriately chosen systems. Finally, although coarse-
grained simulations is capable of predicting the transloca-
tion dynamics and providing guidance for the appropriate
parameters for conductivity measurements, accurate calcu-
lations of the single nucleotide conductivity are still needed
in order to differentiate between different bases. Future
advances will require the combination of coarse-grained
model of molecular configurations during translocation with
first-principle calculations of nucleotide conductivity in
order to provide model predictions of conductivity during
translocation.

Even as the computational capacities keep increasing,
mesoscale models will continue to provide a bridge between
continuum and atomistic methods to fill the gap in our under-
standing of molecular dynamics and material properties. The
successful examples ofRBCandDNAhavedemonstrated the
capabilities of mesoscale coarse-grained modeling as a tool
of understanding cellular and biomolecular dynamics.
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