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Abstract Mechanosensation is an important process in
biological fluid–structure interaction. To understand the
biophysics underlying mechanosensation, it is essential to
quantify the correlation between membrane deformation,
membrane tension, external fluid shear stress, and con-
formation of mechanosensitive (MS) channels. Smoothed
dissipative particle dynamics (SDPD) simulations of vesi-
cle/cell in three types of flow configurations are conducted
to calculate the tension in lipid membrane due to fluid shear
stress from the surroundingviscousflow. In combinationwith
a simple continuum model for an MS channel, SDPD sim-
ulation results suggest that shearing adhered vesicles/cells
is more effective to induce membrane tension sufficient
to stretch MS channels open than a free shear flow or a
constrictive channel flow. In addition, we incorporate the
bilayer–cytoskeletal interaction in a two-component model
to probe the effects of a cytoskeletal network on the gating
of MS channels.
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1 Introduction

Fluid–structure interactions in biophysics often involve com-
plex coupling between chemical and mechanical processes.
At the cellular level, such coupling may be achieved/facili-
tated by transmembrane proteins (mechanosensitive (MS)
channels) that can mechanically transduce external forces
on the plasma membrane to facilitate intracellular trans-
port of chemicals: the MS channels undergo significant
deformation under membrane forces above a critical mag-
nitude and eventually open up for non-selective intracel-
lular transport [1–3]. Embedded in the plasma membrane,
the interactions between the MS channels and the sur-
rounding lipids are complex. Consequently, the mecha-
nisms for opening and activation of MS channels depend
on combinations of the detailed molecular structures [4–
7], the conformational changes [8–10], and coupling with
the lipid-bilayer membrane [11–14] and the cytoskeleton
[15].

The MS channels ultimately detect forces at the protein–
lipid interface, and their functional response was demon-
strated to be governed by force from lipid (FFL) when
purified bacterial mechanosensitive channels of large con-
ductance (MscL) remained mechanosensitive after being
reconstituted into bilayers [15]. In the FFL paradigm the MS
proteins are stretched open by membrane tension for non-
selective intracellular transport of ions and macromolecules
[16–20]. Their gating mechanisms have been investigated by
experiments [19], continuum modeling [21], and molecular
dynamics (MD) simulations [22].

Patch clamp experiments of MscL reported pressure dif-
ferences in the range of 24–72mmHg (1mmHg=133 Pa)
[23] and amembrane tension of 12mN/m [24] are required to
induce gating. While MD simulations estimate larger mem-
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brane tensions in order to open the channel (tens of mN/m)
[25,26], continuum models based on the hydrophobic mis-
match mechanism predict critical gating tensions ranging
from 0.95 to 3.85 mN/m [27], depending on the number of
carbons in the lipid chains,which influences themagnitude of
hydrophobic mismatch. Recently, microfluidic pipette array
experiments reported an activation tension of 4.5 mN/m
in MscL-G22S (a mutant MscL with lower gating tension
threshold) expressing cells [28].

The membrane tension required to open an MS chan-
nel may be generated by osmotic pressure, which ensures
the survival of a cell by preventing rupture during osmotic
shocks. MS channels could also be gated by flow-generated
stresses. Recent experiments by Heureaux et al. [29] demon-
strated that MscL expressed in mammalian cells adhered
on a surface could be activated upon application of suffi-
ciently large fluid shear stress, although the cells began to
detach at that level of shear stress. Furthermore, a multi-
scale model (of an MS channel and lipid-bilayer membrane
system) illustrates that the fluid stress may be used to gate
a single MS channel in microfluidic devices under physio-
logically realizable conditions [30]. Two prototypical flows
(a planar shear flow and flow through a narrowing con-
striction) were studied, and results suggest the possibility
to open an MS channel by tension in the lipid-bilayer
membrane going through deformation under fluid shear
stress.

Analyses of flow-induced gating of MS channels can shed
light on the activation of MSchannels and could be applied to
study mechanotransduction. In addition, microfluidics tech-
niques have enabled the construction of artificial vesicles
reconstituted with MS channels [31], and it may be possible
to employ bacterial MS channels reconstituted into vesicles
for drug release upon the application of fluid stresses. In this
paper we further explore the effects of different flow envi-
ronments on the gating of MS channels. We consider more
realistic configurations where the lipid-bilayer membrane is
a three-dimensional (3D) surface interacting with the sur-
rounding fluid flow, and we also explore the implication of
the bilayer-cytoskeleton interaction on the opening of MS
channels. As a first step, we will employ a red blood cell
(RBC) model to study the effect of the cytoskeleton on the
lipid-bilayer. Although the cytoskeleton of RBCs is different
from a typical mammalian cell, it will give some insights on
how the cytoskeleton may influence the membrane dynam-
ics and thus the mechanosensitive behavior of the MS
channel. In addition to studying the deformation dynamics
of a vesicle/cell in a planar shear flow and flow through
a microfluidic channel with constriction, we study the
tension in a lipid-bilayer membrane adhered on a solid
substrate, a configuration motivated by recent experiments
[29].

In order to establish a comparison between these three
different flow environments, we characterize the strength of
each background flow by the maximum shear stress within
the undisturbed flow environment without the presence of a
vesicle or cell.

In the following sections, we will describe the approaches
we adopt to model the MS channel gating (Sect. 2), the cell
membrane (Sect. 3.1), and the fluid-membrane interaction
(Sect. 3.2), before discussing the results (Sect. 4) and con-
clusions (Sect. 5).

2 Minimal models for mechanosensitive channel
gating

We adopt the analytic model for gating of MS channels
by Wiggins and Phillips [21], which considers the total
free energy E of a cylindrical MS channel of radius R ∈
[Ropen, Rclosed] embedded in a lipid-bilayer membrane as

E = Gh2πR − τ R2π, (1)

where the energy associated with membrane deformation is
calculated by the membrane energy per unit length calcu-
lated in a two-dimensional (2D) setup (Gh) multiplied by
the circumference of the cylindrical channel 2πR, and τ rep-
resents the membrane tension triggering channel gating. The
MS channel has a minimum (Rclosed) and maximum (Ropen)
radius, and it is in an open (or closed) state when the total
free energy E attains its minimum value at R = Ropen (or
R = Rclosed). We consider here a 2D vesicle with perimeter
L and unperturbed bilayer thickness 2a. A length scale R0

can be defined as the radius of the circle having the same
perimeter such that L = 2πR0.

To simplify the analysis we follow Ref. [21] to consider
only the elastic energy contributions from the bending and
thickness deformation associated with the hydrophobic mis-
match

Gh = 1

2

∫ 2πR0

0

[
Kb(∇2u)2 + Kt

(u
a

)2]
ds, (2)

where Kb is the bending rigidity of the lipid-bilayer, Kt is
the stiffness associated with membrane thickness deforma-
tion u, and s is the arclength along the bilayer membrane.
Minimizing the energy functional in Eq. (2) the governing
equation for u can then be obtained as

∇4u + Kt

Kba2
u = 0, (3)

and the solution is given by u = ∑4
n=1 Anekns , where

kn = (Kt/Kba2)1/4ei[(2n−1) π /4] and i = √−1. The coeffi-
cients An are determined by the constraints of hydrophobic
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mismatch at theMSchannel: u(s = 0) = u(s = 2πR0) = U
and the condition of zero slope at the interface [32]: us(s =
0) = us(s = 2πR0) = 0. Substituting the analytical solution
for u into Eq. (2) we obtain the membrane energy per unit
length

Gh = U 2

√
2K 1/4

b K 3/4
t

a3/2
Γ, (4)

where

Γ = cosh(2πΛ) − cos(2π Λ)

sinh(2πΛ) + sin(2π Λ)
, and Λ = R0√

2

(
Kt

Kba2

)1/4
. (5)

The critical membrane tension τc for an MS to open can
be obtained by determining the tension at which the free
energies of the open and closed states are the same [27], i.e.,
E(R = Rclosed) = E(R = Ropen), which implies

τc = 2KU 2

Ropen + Rclosed
Γ, where K =

√
2(K 3

t Kb)
1/4

a3/2
. (6)

Similar to the planar case [21,27], the critical tension
scales quadratically with the hydrophobic mismatch U . We
first probe the effect of the vesicle size R0, which enters
the critical tension only through the factor Γ (Eq. (5)), and
Γ becomes approximately constant (≈1) in the Λ � 1
regime. With typical lipid-bilayer properties: Kb = 50kBT ,
Kt = 60 kB/nm2, a = 2 nm, and a vesicle radius of
1 µm, the value of Λ ≈ 523 is typically large. The vesi-
cle size, therefore, does not play a significant role in the
value of critical tension, which is approximately given by
τc ≈ 2KU 2/(Ropen + Rclosed) for typical biological set-
tings. With Rclosed = 2.3 nm and Ropen = 3.5 nm [27], a
hydrophobic mismatch of U = 0.26 nm leads to a critical
tension of τc ≈ 2.7 mN/m. Shall the number of carbons in
the lipid chains is reduced to 14 (phosphatidylcholine con-
taining monosaturated chains of 14 — PC 14 bilayer), the
hydrophobic mismatch is reduced by half (U = 0.13 nm)
[27] and the critical membrane tension can be lowered by
four times τc ≈ 0.68 mN/m.

In this work we focus on using the example of using
a PC 14 bilayer and adopt the critical membrane tension
τc = 0.68 mN/m as a benchmark for the discussion of how
different flow environments can generate the required mem-
brane tension for gating MS channels.
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Fig. 1 a Two-component model of an RBC. b Local triangu-
lar networks of the two-component model. c Normal and tan-
gential interactions between the lipid-bilayer and the cytoskeleton.
dPhysical picture of the local bilayer–cytoskeletal interaction. (Adapted
from Ref. [33]). For more details see Ref. [33]

3 Numerical simulations of vesicle and cell
dynamics

3.1 Modeling the cell membrane

In our simulations, the cell membrane is modeled by two
different components in the two-component model, i.e., the
lipid-bilayer and the cytoskeleton, as shown in Fig. 1. Each
component is represented by a 2D triangular network with
Nv smoothed dissipative particle dynamics (SDPD) particles.
The total elastic energy of the RBC membrane is written as

U = Us +Ub +Ua+v +Uint, (7)

where Us is the cytoskeleton elastic energy, given by the
worm-like chain (WLC) potential and a repulsive power
potential as

Us=
∑

j∈1,2,...,Ns

[
kBT lm(3x2j −2x3j )

4p(1−x j )
+ kp

(n−1)ln−1
j

]
, n = 2,

(8)

where l j and lm are the spectrin natural length and contour
length, Ns is the number of spectrins, while x j = l j/ lm. p
is the persistence length, kB is the Boltzmann constant, T is
the temperature, kp is the power term constant.

Ub is the elastic energy of the lipid-bilayer, which is writ-
ten as

Ub =
∑

j∈1,2,...,Ns

Kb
[
1 − cos(θ j − θ0)

]
, (9)
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where Kb = 2Kb/
√
3 is the bending coefficient, which is

related to the bending stiffness of the bilayer, Kb. θ0 is the
spontaneous angle and θ j is the instantaneous angle between
twoadjacent triangles as shown inFig. 1b. Furthermore,Ua+v

is the energy due to cell area and volume conservation, which
is written as

Ua+v =
∑

j∈1,2,...,Nt

kl(A j − A0)
2

2A0
+ kv(V tot − V tot

0 )2

2V tot
0

, (10)

where Nt is triangle number, A0 is the initial triangle area,
and A j is the current triangle area as shown in Fig. 1b. V tot

0 is
the initial volume of an RBC and V tot is the current volume.
kl and kv are penalty constants.

In addition to the membrane elasticity, we also consider
the viscosities of the lipid-bilayer and the cytoskeleton by
adding dissipative and random forces as

FD,k
i j = −γ T

k vi j − γ C
k (vi j · ei j )ei j , (11)

FR,k
i j �t = √

2kBT

(√
2γ T

k dW
S
i j

+
√
3γ C

k − γ T
k
tr[dW i j ]

3
I
)

· ei j , (12)

where k = b, s stands for the lipid-bilayer or the cytoskele-
ton, respectively. γ T

k and γ C
k are dissipative coefficients with

a condition 3γ C
k > γ T

k ; ei j and vi j are the relative position
and velocity. The membrane viscosities can be obtained as

ηk = √
3γ T

k +
√
3γ C

k

4
. (13)

Viscosity values of the lipid-bilayer and the cytoskele-
ton are chosen as 0.0125 and 0.001 pN ·µm−1, respectively,
which are taken from Ref. [34].

To describe the bilayer–cytoskeletal interaction, we add
another term Uint as

Uint =
∑

j∈1,2,...,Nbs

kbs(d j − d j0)
2

2
, (14)

where kbs represents the elastic stiffness of the bonds between
the bilayer and the cytoskeleton, and Nbs is the number of
vertical bonds, including the bonds between the transmem-
brane proteins (band-3 and glycophorin C) and spectrins.
We simulate the bilayer-cytoskeletal interaction by a tangen-
tial friction force and a normal viscoelastic force as shown
in Fig. 1c, d. d j is current bond length; d j0 is the initial
bond length. Experiments show that d j0 ≈ 30 nm [35]. We
employed a master-slave penalty contact algorithm to cal-
culate the bilayer–cytoskeletal interaction force [36]. The

elastic interaction force on a cytoskeletal vertex is given as

f Ej = kbs(d j − d j0)n j , (15)

where n j is the normal unit vector. We also add a vertical
damping force as

fDj = −cbs(v j · n j )n j , (16)

where v j is the relative velocity and cbs is the damping coeffi-
cient. The bilayer–cytoskeletal viscous friction force is given
as

f Fj = − fbs[v j − (v j · n j )n j ], (17)

where fbs is the friction coefficient. (We choose fbs=cbs in
our simulations.)

To keep the constant temperature, we add another random
force as [37]

fRj �t = √
2kBT

(√
2 fbsdWA

i j + √
3cbs

tr[dW i j ]
3

I
)

· n j ,

(18)

where dWA
i j = (dW i j − dW j i )/2 is the anti-symmetric part

of the Wiener increment. To summarize, the total bilayer–
cytoskeletal interaction force is given as

f intj = f Ej + fDj + f Fj + fRj . (19)

The stress on the membrane is calculated by the Virial
theorem as

σab = − 1

S

⎡
⎣1

2

Np∑
n=1

(r1a F1b + r2a F2b)

+ 1

2

Nb∑
n=1

(r1a F1b + r2a F2b)

+ 1

3

Na∑
n=1

(r1a F1b + r2a F2b + r3a F3b)

+ 1

4

Nd∑
n=1

(r1a F1b + r2a F2b + r3a F3b + r4a F4b)

]
.

(20)

Here, the first term is a pairwise energy contribution with
n loops over the Np neighbors of particle I , r1 and r2 are
the positions of the two particles in the pairwise interaction,
and F1 and F2 are the forces on the two particles resulting
from the pairwise interaction. The second term is a bond
contribution of similar form for the Nb bonds which atom
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Table 1 Parameters of the lipid-bilayer

Kb (kBT ) μb (pN ·µm−1) kl kv

50 1 × 10−3 5 × 103 5 × 103

Kb, bilayer bending stiffness; μb, bilayer shear stiffness (a very small
value to stabilize numerical algorithm); kl, area conservation penalty
constant; kv, volume conservation penalty constant

Table 2 Parameters of the cytoskeleton

μs (pN ·µm−1) cbs, fbs (pN · s ·µm−1) kbs (pN ·µm−1)

60.0 0.01 100.0

μs, initial shear modulus of the cytoskeleton; kbs, bilayer–cytoskeletal
interaction stiffness; cbs, bilayer–cytoskeletal interaction damping coef-
ficient; fbs, bilayer–cytoskeletal friction coefficient

I is part of. There are similar terms for the Na three-point
angle and Nd bending dihedral interactions that particle I is
part of. S is the area occupied by particle I . The membrane
tension is calculated as the trace of the stress tensor.

The key parameters of the two-component model are
provided in Tables 1 and 2. The shear modulus of the
cytoskeleton is chosen to be 60 pN ·µm−1, which is ten times
larger than that of healthy RBCs (6 pN ·µm−1), as the cells
used in experiments (such as epithelial cells used inRef. [29])
is much stiffer than RBCs.We simplify the shape of the vesi-
cle and the cell as an ellipsoid specified by three radii.

3.2 Modeling the fluid-membrane interaction

We employ the SDPD to simulate the dynamics of vesicles
and cells immersed in different flowenvironments. SDPD is a
mesoscopic numerical method [38], which was an extension
from original dissipative particle dynamics (DPD) developed
to simulate fluids and polymers [39,40]. It has been suc-
cessfully applied to simulate red blood cells [41–43]. Fluids
and polymers in the SDPD simulations are represented by N
SDPD particles, which interact with each other via pairwise
potentials and their motions follow Newton’s second law.
An SDPD particle represents a cluster of atoms, different
from classical molecular dynamics. Conservative, dissipa-
tive, and random pairwise interaction forces are applied
between SDPD particles i and j at positions ri and r j . They
are written as

FC
i j =

(
pi
ρ2
i

+ p j

ρ2
j

)
ω(ri j )ei j , (21)

FD
i j = −γ

[
vi j + (ei j ·vi j )ei j

]
, (22)

FR
i j = σ

(
dWS

i j + tr[dW i j ]
3

)
ei j�t−1/2, (23)

where ri j = ri − r j , ri j = |ri j |, ei j = ri j/ri j , and
vi j = vi −v j . The strengths of dissipative and random forces
are specified by constants γ and σ , respectively. The cutoff
radius is defined as rc. Pi , Pj , ρi , and ρ j are the pressure and

density of particle i and j . �t is the time step size. dWS
i j =

dWS
i j − tr[dWS

i j ]I/3, where dW i j is the Wiener increment.
The Wiener increment dW i j (t) = W i j (t + �t) − W i j (t)
over a time step. The equation of state is given as

p(ρ) = c20ρ0
7

[(
ρ

ρ0

)7

− 1

]
, (24)

where c0 is the speed of sound in water and ρ0 is the initial
density ofwater. In addition,ω(ri j ) is aweight function given
by

ω
(
ri j

) = 315

4πr5c

(
1 − r

rc

)2

. (25)

The cutoff radius in this work is set to be rc = 1.5846.
The interaction between the membrane particles and fluid

particles are treated using DPD interactions [41]. Bounce-
back condition is enforced between the wall and fluid parti-
cles to achieve the no-slip condition. Bounce-back reflections
offluid particles at themembrane surface is applied to enforce
the no-penetration condition [44]. Furthermore, dissipative
force between fluid particles and membrane particles are
applied to enforce the no-slip boundary conditions at the
membrane surface.

4 Results and discussion

Under a fluid flow the lipid membrane of the vesicle/cell
may deform dynamically, and as a result the membrane ten-
sion may become non-uniform and time-varying. In many
experiments the vesicle/cell shape deformation at equilib-
rium is often used as an indicator for tension in themembrane,
mainly because it is difficult to measure tension directly
in experiments. Motivated by recent experiments on shear-
ing adhered cells [29], we first investigate the correlation
between equilibrium deformation of adhered vesicles/cells
under a shear flow (Fig. 2c). Figure 3 shows the equilibrium
deformation ratio of adhered vesicles and the cells under a
shear flow with different initial aspect ratios of a spheroid.
The radius of the adhesion area in the simulation is set to be
2 µm, while in the experiments it can vary significantly [29].
The equilibrium deformation ratio is defined as λ = Dx/D0,
where Dx is the maximum dimension in the x-direction of
the current vesicle or cell shape and D0 = 2(abc)1/3 is the
equivalent diameter of the original shape, where a, b, c are
the three radii of the ellipsoid shape of the cell or vesicle.
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Fig. 2 (Color online) Simulations setups. a A cell under free shear
flow. b A cell under constricted channel flow. c A cell under adhesion
shear flow. Red particles represent the bilayer and blue particles rep-
resent the cytoskeleton. Purple particles represent the fluid and cyan
particles represent the walls
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Fig. 3 The deformation ratio of the vesicle and the cell under adhesion
shear flow with different aspect ratios

For the same flow shear stress, the vesicles experience larger
deformation than cells, because the cells have a cytoskeleton
that strengthens the effective rigidity of the cell. Furthermore,
the equilibrium deformation ratio depends very weakly on
the initial aspect ratios (keeping a = b = 5 µm and varying
c = 3.0, 3.5, 4.0 µm).

We then compare three different fluid environments:
(1) a planar shear flow (Fig. 2a), (2) channel flow through
a constriction (Fig. 2b) with a width of 6 µm, a length of
40 µm and a depth of 10 µm, and (3) a shear flow applied to
an adhered vesicle/cell on a solid substrate (Fig. 2c).
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Fig. 4 Average membrane tension of a vesicle. a a = b = 5µm and
c = 3µm. b a = b = 5µm and c = 3.5µm. c a = b = 5µm and
c = 4µm

For fair comparison between these three fluid environ-
ments we use the maximum shear stress in the absence of a
vesicle or RBC as a control parameter tomeasure the strength
of each background flow. While the shear stress is uniform
in case A, the maximum shear stress in the undisturbed flow
occurs on the wall in cases B and C. Thesemaximum stresses
are kept the same in the three different background flows
for exploring their effectiveness in inducing gating of MS

123



1018 Z. Peng et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3M
a
x
i
m
u
m
 
m
e
m
b
r
a
n
e
 
t
e
n
s
i
o
n
 
(
m
N
/
m
)

Flow shear stress (Pa)

Free shear (vesicle)
Constricted channel (vesicle)

Adhesion shear (vesicle)

a

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3M
a
x
i
m
u
m
 
m
e
m
b
r
a
n
e
 
t
e
n
s
i
o
n
 
(
m
N
/
m
)

Flow shear stress (Pa)

Free shear (vesicle)
Constricted channel (vesicle)

Adhesion shear (vesicle)

b

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3M
a
x
i
m
u
m
 
m
e
m
b
r
a
n
e
 
t
e
n
s
i
o
n
 
(
m
N
/
m
)

Flow shear stress (Pa)

Free shear (vesicle)
Constricted channel (vesicle)

Adhesion shear (vesicle)

c

Fig. 5 Maximummembrane tension of a vesicle. a a = b = 5µm and
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channels. We remark that for case B, a uniform pressure gra-
dient is applied across the channel constriction with periodic
boundary conditions are applied at the inlet and outlet of the
computational domain in the x-direction. The computational
domain size is selected to be sufficiently large so that its
influence on the cell dynamics is small.

We first investigate the connection between shape defor-
mation and the development of membrane tension under the
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Fig. 6 (Color online) Time evolution of the membrane tension and
deformation ratio of a vesicle and a cell passing the constricted channel
with flow shear stress of 2 Pa

three different flow conditions. Figure 4 shows the average
membrane tension (averaged over themembrane area) versus
applied shear stress for vesicles with three different aspect
ratios. The membrane tension in the adhesion shear case
increases much faster with the applied shear stress than the
other two cases, and the case of constricted channel flow
observes the slowest increase in membrane tension. With
the three different aspect ratios experimented, we demon-
strate the weak dependence of the results on the aspect ratio
(Fig. 4a–c).

The average membrane tension in all three cases is below
the benchmark critical membrane tension (τc = 0.68 mN/m)
for opening an MS channel. The maximum membrane ten-
sion follows the same trends as the average membrane stress
as shown in Fig. 5, and membrane tension beyond the criti-
cal membrane tension τc can be reached for sufficiently large
applied shear stress. For example, the membrane tension of
a vesicle in the adhesion shear case and the free shear case
can reach a maximum value of 1.5 mN/m, upon an applied
shear stress of 1.5 and 3 Pa, respectively.

Even in the slowly increasing constricted channel flow
case, the membrane tension reach 0.9 mN/m under the appli-
cation a shear stress of 3 Pa. In our simulation setup for
the constriction channel (based on experimental setup in
Ref. [28]), the size of the constriction is chosen so the vesi-
cle/cell can flow through the constriction instead of blocking
the channel as inmicropipette experiments.We show inFig. 6
the evolution of average tension (red solid line) and deforma-
tion ratio (blue dotted line) of the vesicle as it approaches,
passes through, and leaves the channel constriction. There
is a high correlation between deformation and membrane
tension, and both of them attain their maximum values as
the vesicle first enters the channel constriction. Inside the
constriction, the membrane tension relaxes as the vesicle
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Fig. 7 Average membrane tension of a cell. a a = b = 5µm and
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deformation decreases, and the membrane tension sharply
drops to almost zero as the vesicle exits the channel con-
striction. This example also demonstrates that the membrane
tension varies dynamically in both space and time, and spe-
cial care must be taken when inferring membrane tension
from membrane shape.
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Fig. 8 Maximum membrane tension of a cell. a a = b = 5µm and
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Furthermore, we investigate the effect of the cytoskeletal
network (a cell) on the dynamics of membrane tension for
the same flow conditions in Figs. 7 and 8. Under the same
flow shear stress, both the average and maximum membrane
tensions in cells are smaller than the corresponding cases in
vesicles, especially for high shear stress. The evolution of
deformation ratio and average membrane tension for a cell
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through a channel constriction is shown in Fig. 6. The general
trends of smaller deformation (violent dotted line) and lower
membrane tension (green dotted line) comparedwith the case
of a vesicle still apply.
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Fig. 9 Effect of the flow shear stress on the percentage of area where
the MS channels are open for vesicles under three flow conditions.
Insets membrane tension distribution in the A free shear, B constricted
channel, and C adhesion shear cases. Areas with membrane tension
greater than the critical membrane tension τc are highlighted

Fig. 10 a Membrane tension distribution of a cell under free shear
flow. b Normal cytoskeleton stress applied on the lipid-bilayer under
free shear flow. cMembrane tension distribution of a cell under adhesion
shear flow. d Normal cytoskeleton stress applied on the lipid-bilayer
under adhesion shear flow. e Membrane tension distribution of a cell
under constricted channel flow. f Normal cytoskeleton stress applied on
the lipid-bilayer under constricted channel flow

Finally, we represent our results in terms of the percent-
age of area where the membrane tension exceeds the critical
membrane τc = 0.68 mN/m, in which case the MS channel
can open, under the three different flow environments as a
function of the applied shear stress (Fig. 9). We can see that
the adhesion shear case is the most effective in inducing gat-
ing over a large portion of area of the vesicle, followed by
the channel flow through a constriction. For illustration, typ-
ical membrane tension distributions upon an applied shear
stress of 3 Pa are shown on the vesicle surfaces for the three
flow scenarios, and we have highlighted the regions where
MS channels can open in the three different flows (Fig. 9
insets A–C). At this level of shear stress, over 20% area of
the adhered vesicle attainsmembrane tension greater than the
critical membrane tension (Fig. 9 insets C). For the channel
constriction case (Fig. 9 insets B), the region with tension
greater than the critical value occurs at the front end of the
vesicle passing through the channel constriction, similar to
the findings in Ref. [30]. The corresponding membrane ten-
sion distributions for a cell under the three flow conditions
are shown in Fig. 10a, c, e. Since the overall deformation and
membrane tension are lower than the corresponding vesi-
cle cases, none of the three flow environments can attain
sufficiently high membrane tension to induce gating, given
the benchmark critical membrane tension adopted in this
work. As a remark, it has been recently suggested that nor-
mal forces exerted through the cytoskeletal network on the
bilayer membrane may also contribute to the gating of MS
channels. With our two-component cell model, information
about the normal force can be readily extracted (Fig. 10b, d,
f), which may be useful for modeling the proposed gating
mechanism.

5 Conclusions

Based on the FFL paradigm for the functioning of MS chan-
nels, in this work we investigate which configuration would
be most effective to induce large membrane tension for
gating an MS channel open by external fluid shear stress.
Using SDPD, we simulate the deformation of a lipid-bilayer
membrane (with or without coupling to a cytoskeleton) and
investigate how membrane tension varies under fluid flow
conditions that aremotivated by physiological configurations
and microfluidic experimental setups.

For both vesicle and cell, the lipid-bilayer membrane
deforms when experiencing a shear stress from the sur-
rounding fluid flow. Simulations results suggest that shearing
of adhered vesicles/cells is the most effective in inducing
large membrane tension for gating MS channels open. In
addition, we visualize the spatial distribution of membrane
tension and locate possible locations forMS channel to expe-
rience sufficiently large force to be gated open. We also
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find that membrane deformation is not always related to
membrane tension in a straightforward fashion, especially
in the dynamical setup such as the constriction channel
flow.

Our results further suggest that a cytoskeleton tends to
reduce the membrane deformation and tension, and thus
make it difficult for MS channels to open solely from
the membrane tension. However, we consider here only
the hydrophobic mismatch gating mechanism and other
possible gating mechanisms have been suggested [45,46],
which could exploit the interaction between the bilayer and
cytoskeleton, for instance, the normal forces exerted by the
cytoskeletal network on the bilayer, potentially to lower the
critical membrane tension for MS channels to open. Our
two-component cell model simulations results reveal that
the magnitude of normal stress (σ33) between the bilayer
and cytoskeleton are non-negligible, which suggests incor-
porating other plausible gatingmechanisms in the theoretical
model.
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