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Multiscale modelling of erythrocytes in Stokes
flow
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To quantitatively understand the correlation between the molecular structure of an
erythrocyte (red blood cell, RBC) and its mechanical response, and to predict
mechanically induced structural remodelling in physiological conditions, we developed
a computational model by coupling a multiscale approach of RBC membranes with
a boundary element method (BEM) for surrounding Stokes flows. The membrane is
depicted at three levels: in the whole cell level, a finite element method (FEM) is
employed to model the lipid bilayer and the cytoskeleton as two distinct layers of
continuum shells. The mechanical properties of the cytoskeleton are obtained from
a molecular-detailed model of the junctional complex. The spectrin, a major protein
of the cytoskeleton, is simulated using a molecular-based constitutive model. The
BEM model is coupled with the FEM model through a staggered coupling algorithm.
Using this technique, we first simulated RBC dynamics in capillary flow and found
that the protein density variation and bilayer–skeleton interaction forces are much
lower than those in micropipette aspiration, and the maximum interaction force occurs
at the trailing edge. Then we investigated mechanical responses of RBCs in shear
flow during tumbling, tank-treading and swinging motions. The dependencies of tank-
treading frequency on the blood plasma viscosity and the membrane viscosity we
found match well with benchmark data. The simulation results show that during
tank-treading the protein density variation is insignificant for healthy erythrocytes, but
significant for cells with a smaller bilayer–skeleton friction coefficient, which may be
the case in hereditary spherocytosis.

Key words: capsule/cell dynamics, microfluidics

1. Introduction
Although the mechanics of red blood cells (RBCs) has been studied for more than

half a century, the structure–function relationship at the molecular level is still not
completely understood. Without a nucleus, a mature RBC contains a cytosol enclosed
within a highly flexible yet surprisingly strong cell membrane. This membrane is not
a simple homogeneous single-layer medium. Instead, it consists of a lipid bilayer
supported from the inside by the cytoskeleton, and it is essential to the structural
integrity and stability of the RBC. The cytoskeleton is composed of several major
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FIGURE 1. Multiscale model of a red blood cell: (a) level III, complete cell model;
(b) level II, molecular-detailed junctional complex (JC) model; and (c) level I, spectrin (Sp)
constitutive model.

proteins: α and β spectrin (Sp), ankyrin, band 3, protein 4.1, protein 4.2 and actin,
as well as some minor proteins such as myosin, tropomyosin (TM) and tropomodulin
(E-Tmod). Structurally, this skeleton is organized into approximately 33 000 repeating
units called junctional complexes (JCs). As revealed by transmission electron
microscopy, each JC is a small ‘spoked’ but edge-free hexagon, with six long αβ

Sp dimers radiating from a central short actin protofilament. These repeating units
connect with each other through the head-to-head associations of Sp dimers from
neighbouring units (Cohen, Tyler & Branton 1980). Suspension complexes (SCs)
function as the primary connections between the protein network and the lipid bilayer
(Bruce et al. 2003). A SC consists mainly of band 3 (a transmembrane protein),
ankyrin and protein 4.2 (Bennett & Stenbuck 1979). Another site to link the protein
network to the lipid bilayer involves the actin (Chang & Low 2001), where protein
4.1 is associated with the glycophorin C, another transmembrane protein with a single
transmembrane domain (Reid et al. 1990). The basic molecular architecture of a
JC, and its connectivity with the lipid bilayer, is shown in figure 1(b). To illustrate
the structural response of RBCs, it is necessary to build comprehensive models that
includes sufficient molecular details rather than simple continuum models. Knowledge
about the detailed structure versus response properties is especially important in
understanding the mechanics of diseased or aged cells.

During circulation an RBC sustains large dynamic deformation owing to the
combined effect of the fluid loading and confinement within capillaries and slits of
venous sinuses (e.g. in the spleen) (Mebius & Kraal 2004). The loading associated
with such deformation may affect the structural integrity of the cell (especially for
those cells with molecular defects), as manifested in structural remodelling, structural
failure and cell dysfunction. The possibility of flow-induced cell damage is more
pronounced within artificially created flow fields inside mechanical circulatory support
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Erythrocytes in Stokes flow 301

apparatus (for example within artificial blood pumps). It has been reported that flow
with high shear rates and strong turbulence inside artificial heart valves can destroy
these cells, causing blood haemolysis (see for example Deutsch et al. 2006).

RBC diseases (e.g. hereditary spherocytosis, malaria, and sickle cell disease) are
often associated with defects or mutations of proteins, their inter-connectivity and
their connectivity with the lipid bilayer. These molecular-level changes are usually
manifested in changes of the overall mechanical properties of the cell. For example,
under these conditions the cells may become stiffer, with reduced capacity to pass
through narrow confined openings such as capillaries and slits inside the spleen. One
of the most common diseases is hereditary spherocytosis, in which cells become
spherical due to partial loss of the lipid bilayer. To explain the bilayer loss, a
hypothesis based on the bilayer–skeleton detachment has been suggested (Walensky,
Mohandas & Lux 2003). According to this hypothesis, the skeleton density is
significantly decreased and the linkage between the lipid bilayer and the skeleton
may break under mechanical loads so that the lipid bilayer will separate from the
skeleton. Loss of lipid bilayer may occur in other circumstances. For example, it has
been suggested that during its 120-day lifetime, the RBC may gradually lose some
lipid bilayer as it passes through the spleen. Its surface-to-volume ratio will increase
during this aging process, eventually leading to its ‘death’ inside the spleen (Waugh
et al. 1992).

In addition to bilayer loss, large skeleton deformations may trigger other structural
remodelling such as Sp unfolding or dissociation of the head-to-head connection
between Sp dimers (Li et al. 2007) (which causes a phase transition of the skeleton).
To understand these processes, as well as the dissociation of the skeleton from the
bilayer, it is critical to quantitatively predict the mechanical loads on the inter-protein,
intra-protein and protein-to-bilayer connections. In the following, we briefly review the
existing studies and show that it is still difficult to predict these mechanical loads in
the molecular level, especially the bilayer–skeleton interaction force, through existing
modelling and experimental methods.

Owing to its important physiological function and structural simplicity, the
mechanics of the RBC has been studied extensively during the past 50 years. Existing
studies fall into three categories: (a) those concentrating on the macroscopic response
of the complete cell, including experimental investigations using micropipettes (see for
example Waugh & Evans 1979; Discher, Mohandas & Evans 1994), optical tweezers
(Henon 1999; Sleep et al. 1999; Dao, Lim & Suresh 2003), optical magnetic twisting
cytometry (Puig-De-Morales-Marinkovic et al. 2007), full-field laser interferometry
techniques (Park et al. 2009), as well as numerical models of complete cells without
considering effects of surrounding fluids (Discher, Boal & Boey 1998; Dao, Li &
Suresh 2006; Li et al. 2007; Kabaso et al. 2010); (b) those focusing on the mechanical
response and constitutive properties of single molecules or interconnectivity between
molecules, for example that for Sp (Rief et al. 1997; Law et al. 2003) or for ankryn
(Lee et al. 2006), by using atomic force microscopy (AFM) or molecular-dynamics
(MD) simulations; (c) those focusing on fluid–structure interactions, including in
vitro experiments using flow channels (Hochmuth 1973; Berk & Hochmuth 1992),
microfluidic tools (see for example Fischer 2004; Abkarian, Faivre & Viallat 2007),
as well as various analytical and numerical studies (see for example Pozrikidis
2003a, 2010). Since the primary goal of our research is to relate the fluid–structure
interaction of RBCs in Stokes flow with detailed mechanical loading and structural
deformation inside its molecular architecture, a more detailed review is given on the
third category as follows.
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The asymptotic theories by Barthès-Biesel (1980) and Barthès-Biesel & Rallison
(1981) show the influence of interfacial elasticity on the small deformation of a
capsule consisting of a thin elastic solid skin, enclosing a Newtonian incompressible
liquid, and the rheology of dilute suspensions of capsules. Keller & Skalak (1982)
studied the motion of a tank-treading ellipsoidal particle in a shear flow using an
analytical approach. Secomb et al. (1986) applied lubrication theory to investigate the
motion of axisymmetric RBCs in narrow capillaries (see also Halpern & Secomb
1992). Skotheim & Secomb (2007) obtained the complete phase diagram from
tumbling to tank-treading motions for RBCs in shear flow. Following these analytical
studies, various numerical models were developed to study large deformation
and non-axisymmetric cases of capsules in Stokes flows, including the boundary
element methods (BEMs) developed by Pozrikidis (1990), Zhou & Pozrikidis (1990),
Ramanujan & Pozrikidis (1998), Pozrikidis (2001, 2003b, 2005), Lac et al. (2004),
Kessler, Finken & Seifert (2004) and Zhao et al. (2010), the immersed boundary
methods by Eggleton & Popel (1998), Bagchi (2007), Zhang, Johnson & Popel (2008)
and Le (2010). The RBC membrane is considered as a uniform continuum media in
these models, and the detailed molecular structure was not considered.

Recently multiscale models have been developed to study the static and dynamic
response of RBCs (see for example Fedosov, Caswell & Karniadakis 2010; Fedosov
et al. 2011). Omori et al. (2011) also compared different spring network models and
continuum models of capsules in shear flow. These models, however, do not explicitly
address the detailed internal connectivity of the cell (e.g. the connectivity between the
protein skeleton and the lipid bilayer). Also, important molecular-level processes such
as protein unfolding were not considered due to the absence of models for molecular
connectivity. Controversies arise due to the lack of detailed depiction of internal
connectivity. For example, it is still not clear whether the density of the cytoskeleton
will change significantly during tank-treading motions. According to the model by
Dodson & Dimitrakopoulos (2010), considerable areal dilatation of cytoskeleton is
possible. This is in contradiction with Fischer (1992), who found that during tank
treading there was not enough time for the bilayer–skeleton slip to happen.

It is clear that the quantitative prediction of detailed force distributions inside a
cell (especially the force on structural connection points), is beyond the capacity of
existing models. Similarly, state-of-the-art experimental techniques are not capable
of resolving the distribution of mechanical loads inside a cell. Towards this end, a
numerical model that includes sufficient molecular details is needed.

In this paper, we develop a RBC model with a fluid–structure interaction algorithm
stemming from the approach by Walter et al. (2010) (see also Foessel et al. 2011;
Walter, Salsac & Barthès-Biesel 2011) by including the bending stiffness of the lipid
bilayer using the well-established continuum-based shell element method (Belytschko,
Liu & Moran 2000; Hughes & Liu 1981b). More important, we also incorporate
a multiscale model of the molecular structure of the RBC membrane in order to
study the inter-molecular forces between the lipid bilayer and the cytoskeleton in
different kinds of Stokes flow with physiological relevance. As an initial step in this
direction, hereby we concentrate on a molecular-detailed model of healthy RBCs in
two physiologically relevant Stokes flow conditions, the capillary flow and the shear
flow. Studies on bilayer–skeleton interaction forces at the molecular level of different
diseased cells, e.g. hereditary spherocytosis, malaria and sickle cell disease, will be
carried out in the future.

To simulate the dynamic responses of RBCs in flow fields, we extend the quasi-
static multiscale model of the RBC membrane (Peng, Asaro & Zhu 2010) to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

33
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f I

lli
no

is
 a

t C
hi

ca
go

 L
ib

ra
ry

, o
n 

05
 S

ep
 2

02
1 

at
 2

3:
56

:2
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2011.332
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Erythrocytes in Stokes flow 303

a dynamic version by including the fluid–structure interaction and the membrane
viscoelasticity. First, we briefly review the quasi-static multiscale method in § 2.1.
Then in § 2.2 we develop an approach to solve the fluid–cell interaction problem
by coupling the FEM and the BEM. The membrane viscoelasticity model and the
cytoskeleton dynamics are also included. Numerical results, including the deformation
of an RBC inside a tube, and the tumbling, tank-treading and swinging motions of
an RBC in shear flow, are presented. Comparisons between our multiscale model and
simpler continuum models have also been carried out. Finally, conclusions are drawn.

2. Problem description and mathematical formulations
2.1. Multiscale method

The quasi-static multiscale method consists of three models characterized by different
length scales. These are referred to models at levels I, II and III. At the complete
cell level (level III) the membrane is modelled as two distinct layers of continuum
shells using the finite element method, in which the skeleton–bilayer interactions are
depicted as a slide in the lateral (i.e. in-plane) direction (caused by the mobility of
the skeleton–bilayer pinning points) and a normal contact force. The constitutive laws
of the inner layer (the protein skeleton) are obtained from a molecular-detailed model
(level II). The mechanical properties of the Sp, including its domain folding/unfolding
reactions, are obtained with a molecular-based thermally activated constitutive model
(level I). These three models are coupled through an information-passing multiscale
algorithm, in which predictions of level I and level II models are employed as
constitutive laws in the level II and level III models, respectively. For completeness
in the following we briefly summarize key characteristics of each of these models.
Details of these models are given in our previous publications (Zhu et al. 2007; Zhu &
Asaro 2008; Peng et al. 2010).

Level I (Sp model)
Sp contains multiple folded domains, which can undergo reversible unfolding under

sufficiently large mechanical loads (figure 1c). As observed in AFM experiments, the
transient force–extension curve of Sp stretching displays a trademark sawtooth pattern
related to unfolding of the domains (Rief et al. 1997; Law et al. 2003). This feature
has been successfully reproduced using a model for both quasi-static and dynamic
scenarios (Zhu & Asaro 2008).

Level II (molecular-detailed JC model)
The force–extension relation of the Sp obtained from the level I model is

incorporated into the molecular-detailed model of the JC which considers the dynamic
response of the fully coupled skeleton–bilayer structure (figure 1b). Our model of a JC
is based upon the three-dimensional model of a single JC unit by Sung & Vera (2003)
and the numerical model by Zhu et al. (2007). The junction between the Sp and the
actin protofilament and the Sp-bilayer/actin-bilayer interactions are all based upon the
state-of-the-art understanding of the actual molecular architecture so that this model
is as close to reality as possible. It thus provides a unique capability of predicting
the mesoscale mechanics of single or multiple units of the cytoskeleton network, the
mechanical behaviour of the lipid bilayer and the effect of their interactions.

Level III (complete-cell model)
In level III the cell is modelled as two continuous layers, the outer one representing

the lipid bilayer and the inner one representing the cytoskeleton (figure 1a). The
interaction between the inner and the outer layers is simulated by considering
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FIGURE 2. Schematic of a red blood cell immersed in two fluids with different viscosities
(the cytoskeleton is not drawn and the dashed line denotes the middle surface of the lipid
bilayer).

two issues, normal contact and lateral slide (enabled by the mobility of the
skeleton–bilayer pinning points within the bilayer). Specifically, we treat such an
interaction as a linear spring-softened contact in the normal direction (normal with
respect to the lipid bilayer), and a viscous friction in the tangential direction. The
properties of the friction are determined by the diffusion of transmembrane proteins
(see for example Kapitza et al. 1984; Kodippili et al. 2009), and contribute to the
dynamic response of the composite structure. Owing to this description, the bilayer
and the skeleton are allowed to have different local deformations although the overall
surface area is conserved. For general deformations, we use shell elements with
constant thickness to simulate both layers. Although the constitutive properties of
the lipid bilayer are taken from measurements, the properties of the skeleton are not
readily available and are therefore calculated by using the level II model.

In this paper, both three-dimensional and axisymmetric studies are conducted. Three-
dimensional simulations are used for an RBC in shear flow, while axisymmetric
simulations are used for RBCs in capillary flow. In the following we focus mostly
on the general formulation for three-dimensional problems. Special aspects for
axisymmetric problems will also be mentioned briefly. In these simulations, the
reference configuration (stress-free state) for the cytoskeleton is always chosen to
be its natural biconcave shape. The spontaneous curvature (Seifert, Berndl & Lipowsky
1991) of the lipid bilayer is chosen to be zero.

2.2. Fluid-cell interactions
We consider an RBC filled with an interior fluid (cytoplasma, hereafter referred to as
fluid 2) and immersed in an exterior fluid (e.g. blood plasma, referred to as fluid 1)
as illustrated in figure 2. Here Ω f and Ωb are the volumes occupied by the fluids and
the bilayer, respectively. The boundary between the bilayer and the exterior fluid is
Γ fb,1. The boundary between the bilayer and the interior fluid is Γ fb,2. For a general
problem, two types of boundary conditions are specified: Dirichlet boundary Γ fD and
Neumann boundary Γ fN . The entire computational domain is Ω = Ωb ∪ Ω f and the
entire boundary is Γ = Γ fN ∪ Γ fD ∪ Γ fb,1 ∪ Γ fb,2. Hereafter we use the superscript ‘b’
to represent the lipid bilayer, ‘f ’ the fluid and ‘s’ the cytoskeleton. Furthermore, we
use bold uppercase symbols to represent tensors or multi-column matrices and bold
lowercase symbols to represent vectors or single-column matrices.
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2.2.1. Governing equations
The dynamic responses of both the lipid bilayer and the fluids are controlled by

the conservation of momentum and the conservation of mass. No body force is
considered here, and the inertial force is negligible in this length scale. With the
updated Lagrangian description, the governing equation of lipid bilayer is

∇ ·Θb = 0, (2.1)

where ∇ is the spatial gradient operator and Θb is the Cauchy stress tensor inside
Ωb. The constitutive equations of the lipid bilayer from which Θb is obtained are
presented in § 2.2.3. In (2.1) and what follows, the single dot denotes the scalar
product.

Within the Eulerian description, the Stokes equation and the continuity equation for
interior/exterior Newtonian fluids are expressed as

∇ ·Θ f =−∇pf + ηl∇2vf = 0, (2.2)
∇ ·vf = 0, (2.3)

where Θ f is the Cauchy stress tensor inside the fluids, vf is the fluid velocity
vector, pf is the fluid pressure and ηl is the dynamic viscosity of fluid (l = 1, 2
stand for the exterior and interior fluids, respectively). For normal in vivo RBCs,
η1 = 1.2 cP = 0.0012 pN µm−2 s and η2 = 6 cP = 0.006 pN µm−2 s (see for example
Chien 1987). Λ= η2/η1 is the viscosity contrast ratio.

The boundary conditions are given as

vf = v̄ fD on Γ fD, (2.4)

t f = t̄ fN on Γ fN, (2.5)
vb = vf on Γ fb,1 and Γ fb,2, (2.6)

tb = t f on Γ fb,1, (2.7)
tb − τ bs = t f on Γ fb,2, (2.8)

where v̄ fD is the prescribed velocity vector on Γ fD, and t̄ fN is the prescribed traction
vector on Γ fN , tb =Θb · n and t f =Θ f · n are the surface tractions of the bilayer and
fluid domains (traction is defined as force per unit area on a surface), n is the normal
vector of the boundaries pointing towards fluid 1 and τ bs is the bilayer–skeleton
interaction force per unit area applied on the cytoskeleton, which is presented in § 2.3.

In our approach, the lipid bilayer is modelled as a viscoelastic solid with tiny shear
stiffness and large area stiffness. In reality the lipid bilayer is close to a fluid so
that the current viscoelastic model of the lipid bilayer is just an approximation. To
ensure the accuracy of this treatment, two characteristics are incorporated: (a) the
shear stiffness of the bilayer is much smaller than that of the protein network, so
that the later dominates the shear stiffness of the overall composite structure; (b) the
skeleton–bilayer pinning points (the transmembrane proteins) can move inside the lipid
bilayer, so that the skeleton is able to drift against the bilayer. In this approach,
the shear stiffness of the lipid bilayer is not chosen to be zero due to numerical
reasons. Equation (2.1), together with the constitutive relations, is solved through a
finite element algorithm using shell elements (§ 2.2.2). Shell elements with absolute
zero in-plane shear stiffness is not numerically stable in a Lagrangian description.
Nevertheless, this simple model of the lipid bilayer delivers sufficient accuracy in the
testing cases reported in this paper.
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A boundary element algorithm is adopted to solve dynamics of both the interior and
the exterior fluids. The basic formulations of this method are summarized in § 2.2.5.

2.2.2. Variational form of bilayer equations and finite element discretization
Let V = V(Ωb) denote the trial function space for the displacement ub and

W = W(Ωb) the test function space for the momentum equation (2.1). By using
the principle of virtual power (Belytschko et al. 2000), the variational form (weak
form) of (2.1) with its boundary conditions is stated as finding ub ∈ V such that for
∀δvb ∈W,∫∫∫

Ωb
∇δvb :Θb dΩb =

∫∫
Γ fb,2

δvb
· τ bs dΓ +

∫∫
Γ fb,1∪Γ fb,2

δvb
· t f dΓ, (2.9)

where vb = ∂ub/∂t is the velocity vector of the lipid bilayer.
Numerically, we employ the FEM to solve (2.9) by modelling the lipid bilayer

as congregations of shell elements. For simplicity and numerical robustness, in our
current study we choose the C0 explicit Hughes–Liu elements (Hughes & Liu 1981b),
i.e. the continuum-based shell element (Belytschko et al. 2000), which is based on the
Reisser–Mindlin shell theory in which transverse shear deformation is allowed.

In this approach, a bi-unit cube within the (ξ, η, ζ ) space is mapped to the geometry
of a shell element based on the iso-parametric representation as shown in figure 3. In
the physical space, the lines corresponding to constant ξ and η (i.e. the lines in ζ

direction) are called fibres. The surfaces of constant ζ are called laminae. Four nodes
are chosen at ζ = 0, the middle lamina which is called the reference surface. With the
bilinear in-plane interpolation, a point x on a shell element is expressed as

x(ξ, η, ζ )= x̄(ξ, η)+ x′(ξ, η, ζ ), (2.10)

where

x̄(ξ, η)=
4∑

a=1

N(a)(ξ, η)x̄(a) (2.11)

and

x′(ξ, η, ζ )=
4∑

a=1

N(a)(ξ, η)x′(a)(ζ ). (2.12)

Let x̄ denote the position vector of a point at the reference surface and x′ denote
the point vector which starts from x̄ and points towards the fibre direction, while
a = 1, 2, 3, 4 correspond to the four nodes shown in figure 3. The superscript ‘(a)’
denotes quantities at node ‘a’. For example, x̄(1) and x′(1) are the position and
the point vectors at node ‘1’, respectively. The shape (interpolation) functions N(a)

at node ‘a’ are given as N(1) = (1/4)(1 − ξ)(1 − η), N(2) = (1/4)(1 + ξ)(1 − η),
N(3) = (1/4)(1+ξ)(1+η) and N(4) = (1/4)(1−ξ)(1+η). Uniformly reduced integration
with one in-plane Gaussian point at the centre and three Gaussian points in the
thickness direction is applied to integrate (2.9) (Belytschko et al. 2000).

By using the shell element representation, the lipid bilayer domain Ωb between the
surfaces Γ fb,1 and Γ fb,2 is represented by a single middle reference surface Γ fb shown
as the dashed line in figure 2. After finite element discretization (detailed formulation
of this method can be found in Hughes & Liu 1981b and axisymmetric formulation
can be found in Hughes & Liu 1981a), the governing (2.1) is re-expressed as
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FIGURE 3. Three-dimensional iso-parametric mapping from a bi-unit cube to the physical
shell element domain.

6NFE (NFE is the number of nodes in finite elements) algebra equations symbolically
expressed as

f b
FE = f bs

FE + f fb
FE, (2.13)

mb
FE =mbs

FE +mfb
FE, (2.14)

where f b
FE is the global nodal vector of internal force related to material constitutive

equations of the lipid bilayer, f bs
FE is the global nodal vector of external force from

the bilayer–skeleton interaction and f fb
FE is the global nodal vector of fluid-bilayer

interaction force on the surface Γ fb, while mb
FE is the global nodal vector of internal

moment of the lipid bilayer, mbs
FE is the global nodal vector of external moment from

the bilayer–skeleton interaction and mfb
FE is the global nodal vector of the fluid–bilayer

interaction moment on the surface Γ fb. All of these vectors have the dimension of
3NFE. The exact forms of these vectors are found in Hughes & Liu (1981b).

2.2.3. Constitutive laws
The viscoelasticity of the bilayer–skeleton system is essential for its ability to

maintain structural stability under large dynamic loads. The viscosity stems from
the following sources: (a) the viscosity of the lipid bilayer, (b) the viscosity of
the cytoskeleton, (c) the skeleton–bilayer viscous friction due to the mobility of the
transmembrane proteins (band 3 and glycophorin C) within the lipid bilayer and the
bilayer–skeleton hydrodynamic drags and (d) the viscosity of the surrounding flow.
Effects (c) and (d) are considered in §§ 2.3.1 and 2.3.2, respectively.

Evans & Hochmuth (1976) applied a generalized Voigt–Kelvin stress–strain relation
to simulate the viscoelastic response of the membrane. Puig-De-Morales-Marinkovic
et al. (2007) found that the viscoelastic property of the RBC membrane followed
a power law. Fractional order models were used by Craiem & Magin (2010) to
study the viscoelasticity of RBCs. Lubarda (2011) presented a rate-type constitutive
theory of elastic and viscoelastic response of an erythrocyte membrane for arbitrary
isotropic strain energy functions. For simplicity, we use the generalized Voigt–Kelvin
stress–strain relation by Evans & Hochmuth (1976) to model both the lipid bilayer and
the cytoskeleton, which is written as

Θ1h= T̄ + µi

2λ2
1λ

2
2

(λ2
1 − λ2

2)+ 2νi
1
λ1

Dλ1

Dt
, (2.15)
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Θ2h= T̄ + µi

2λ2
1λ

2
2

(λ2
2 − λ2

1)+ 2νi
1
λ2

Dλ2

Dt
, (2.16)

where D/Dt is the material derivative with respect to time t, and Θ1 and Θ2 are
principal stresses. The constant νi is the surface viscosity, and µi is the surface shear
stiffness (i= b, s stands for the lipid bilayer or the cytoskeleton, respectively). Variable
T̄ is the isotropic tension. For the cytoskeleton, µs and T̄ are calculated based on the
molecular-detailed model of the JC, and the exact formulations are presented in Peng
et al. (2010). For the lipid bilayer, T̄ = Kb(λ1λ2 − 1), where Kb = 5 × 105 pN µm−1 is
the bilayer area stiffness, and λ1 and λ2 are principal stretches. Since the lipid bilayer
is a fluid and its shear modulus is nearly zero, for numerical stability we choose a
small but non-zero value as µb = 10−3µs. The constant h is the thickness of the bilayer
(2.2 nm) or the cytoskeleton (2 nm). The discrepancy between the bilayer thickness
used herein and its actual value (4–5 nm) is attributed to the fact that in our study
the bilayer is simplified as a continuous (but anisotropic) shell without considering
its detailed molecular architecture. Detailed explanations of the bilayer and skeleton
thicknesses used here can be found in Peng et al. (2010).

The viscosity for the lipid bilayer is given as νb = 10−9 Pa m s (Otter & Shkulipa
2007). Since the total membrane viscosity is measured as 5 × 10−8 Pa m s (Tran-Son-
Tay, Sutera & Rao 1984), which is 50 times higher than the lipid bilayer viscosity,
it is reasonable to assume that the membrane viscosity is mainly attributed to the
viscosity of the cytoskeleton. Thus, we assign the viscosity of the cytoskeleton as
νs = 5× 10−8 Pa m s.

Through numerical tests it was shown that for our modelling approach described
in the previous sections, a direct numerical implementation of the Voigt–Kelvin
stress–strain relation described in (2.15) and (2.16) may lead to numerical instability.
To avoid this problem, we follow the numerical implementation of the viscous foam
(material type 62) in the commercial finite element package LS-DYNA (Hallquist
1998) and incorporate an elastic term with a shear stiffness µ′i = 100µi in series with
the viscous term (νi). Incidently, if µ′i =∞ this formulation is exactly the same as
the generalized Voigt–Kelvin model proposed by Evans & Hochmuth (1976). The
numerical implementation of this viscoelastic model with finite strains can be found in
Hallquist (1998) and Holzapfel (2000).

2.2.4. Bending stiffness of the lipid bilayer
The bending resistance of the lipid bilayer is included in the aforementioned

continuum-based shell element by integrating the stress resultant in the thickness
direction (Belytschko et al. 2000). Numerically, the bending moment is caused by the
stress difference at the three Gaussian integration points in the thickness direction. It
is different from traditional bending implementation by assigning a direct relationship
between the bending moment and the curvature.

Considering a homogeneous shell with thickness h described by Evans & Skalak
(1980), its bending stiffness kc and area modulus K are related by

kc =
∫ +(h/2)
−(h/2)

y2 K

h
dy= Kh2

12
. (2.17)

For the lipid bilayer, we use h = 2.2 nm and K = Kb = 5 × 105 pN µm−1 so that
kc = 2× 10−19 J.
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2.2.5. Boundary integral representation for fluid equations and boundary element
discretization

By using the Lorentz reciprocal theorem (Pozrikidis 1992), (2.2) and (2.3) can
be described by a boundary integral representation. In this study, we focus on the
three-dimensional problem of an RBC immersed in shear flow in an open space, and
the axisymmetric problem of a file of RBCs in a cylindrical tube.

For an RBC immersed in a shear flow, the boundary integral representation for the
velocity at the point x0 located in the exterior fluid (fluid 1) is given as (Pozrikidis
1992, 2003b)

vf (x0)= v̄f (x0)− 1
8πη1

∫∫
Γ fb

G(x, x0) ·1t f (x) dΓ (x)

+ 1−Λ
8π

∫∫
Γ fb

vf (x) · T (x, x0) ·n(x) dΓ (x), (2.18)

where v̄f (x0) is the prescribed undisturbed velocity field of the shear flow in the
absence of the cell, η1 is the viscosity of the exterior fluid and Λ = η2/η1. Vector
1t f = t f ,1 − t f ,2 is the discontinuity in the interfacial surface traction, where t f ,1 is the
traction in the outside surface Γ fb,1 of the interface and t f ,2 is the traction in the inside
surface Γ fb,2 of the interface.

The second term in the right-hand side of (2.18) is the single-layer potential,
which represents contribution from the distribution of point forces associated with
the Green’s function for velocity. The third term is the double-layer potential, which
represents contributions from point sources and point force dipoles. Matrix G contains
the free-space Green’s function for velocity Gij expressed as

Gij(x, x0)= δij

|x− x0| +
(xi − x0i)(xj − x0j)

|x− x0 |3
, (2.19)

where δij is Kronecker’s delta. Matrix T is the Green’s function for stress. Its
components are

Tijk(x, x0)=−6
(xi − x0i)(xj − x0j)(xk − x0k)

|x− x0 |5
. (2.20)

As the point x0 approaches the interface Γ fb from the external side, we obtain a
boundary integral equation as (Pozrikidis 1992, 2003b)

vf (x0)= 2
1+Λ v̄f (x0)− 1

4πη1(Λ+ 1)

∫∫
Γ fb

G(x, x0) ·1t f (x) dΓ (x)

+ 1−Λ
4π(1+Λ)−

∫ ∫
Γ fb

vf (x) · T (x, x0) ·n(x) Γ (x), (2.21)

where −
∫ ∫

denotes the principal value integration.
Numerically, we apply the BEM to discretize the boundary integral equation (2.21).

The collocation method is employed. A constant four-node quadrilateral element
is developed. We discretize the boundary Γ fb into N fb

BE elements. The single-
layer potential kernel with a weak 1/r (r = |x − x0|) singularity is integrated by
segmenting the quadrilateral into flat triangles and the integration is performed in
a polar coordinate system. Four-by-four Gaussian integration points are employed to
integrate (2.21) for both the quadrilateral element and the flat triangles. The weak 1/r2
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singularity in the double-layer potential kernel is removed by using the relation

−
∫ ∫

Γ fb
vf (x) · T (x, x0) ·n(x) dΓ (x)

=
∫∫

Γ fb
[vf (x)− vf (x0)] · T (x, x0) ·n(x) dΓ (x)+ 4πvf (x0). (2.22)

Applying the boundary integral equation at the collocation points of boundary Γ fb,
and after discretization of (2.21), we obtain 3N fb

BE algebra equations, which is written
symbolically in a matrix form as

vfb
BE = v̄ fb

BE − Sqfb
BE + Dvfb

BE, (2.23)

where vfb
BE is the global vector including velocities at all collocation points on Γ fb

(i.e. its dimension is 3N fb
BE). Vector v̄fb

BE is the global vector of undisturbed velocities.
Vector qfb

BE is the global surface traction vectors on Γ fb. Here S is the single-layer
potential coefficient matrices on the interface Γ fb. Matrix D is the double-layer
potential coefficient matrix on the interface Γ fb. The matrix vector multiplication
Dvfb

BE is achieved by using (2.22).
Solving (2.23) for vfb

BE, we obtain

vfb
BE = (I − D)−1[v̄ fb

BE − Sqfb
BE], (2.24)

where I is an identity matrix. For numerical efficiency, the solution of (2.24) is
obtained by using successive substitutions instead of direct matrix inversion (I − D)−1

(Pozrikidis 1992).
Now the interfacial velocity vfb

BE is expressed in terms of qfb
BE, which is transferred

from finite elements of the lipid bilayer and is presented in § 2.2.6.
In a special case when Λ = 1 (i.e. the viscosities of the interior and the exterior

fluids are identical), the computation is much simplified since (2.24) is reduced to

vfb
BE = v̄ fb

BE − Sqfb
BE. (2.25)

The problem of a file of periodic RBCs in a cylindrical tube with axisymmetric
configuration can be formulated similarly by using a Green’s function representing a
periodic array of point force rings inside a circular cylinder, which is used in our
simulations. The detailed form of this Green’s function and related formulations can
be found in Pozrikidis (1992, 2005). Six Gaussian integration points are used for the
axisymmetric boundary elements, and uniformly reduced integration (Belytschko et al.
2000) is employed for the axisymmetric shell elements (i.e. one in-plane Gaussian
integration point and three Gaussian integration points in the thickness direction).

2.2.6. Coupling FEM and BEM
According to the boundary conditions (2.6)–(2.8), the lipid bilayer and the fluid

share the same velocity and balance the tractions on the interface. To achieve this,
numerically we employ a staggered algorithm to couple FEM and BEM (Walter et al.
2010).

For the constant quadrilateral elements in BEM, four nodes are shared with the
quadrilateral shell element derived in § 2.2.2. In axisymmetric cases, the axisymmetric
Hughes–Liu shell elements (Hughes & Liu 1981a) are coupled with the axisymmetric
boundary elements with the special Green’s function mentioned in § 2.2.5 by sharing
two nodes.
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Furthermore, it is necessary to relate the global nodal force and moment vectors f fb
FE

and mfb
FE of finite elements to the surface traction vector qfb

BE in boundary elements.
Walter et al. (2010) employed iso-parametric elements for both FEM and BEM, and
used membrane elements without bending stiffness to model the capsule. Based on the
principle of virtual work, they related the nodal force f fb

FE of membrane elements in
FEM with the nodal traction qfb

BE of BEM by solving a linear equation expressed as

Mqfb
BE = f fb

FE, (2.26)

where the square matrix M has a similar structure as the consistent mass matrix
in FEM. However, for the continuum-based shell element with bending stiffness
described in § 2.2.2, there are also rotational degrees of freedom at the nodes, since
it is based on the Reissner–Mindlin shell theory rather than the Kirchhoff–Love shell
theory and the transverse shear deformation is allowed. The transverse shear stiffness
acts as a penalty parameter as shown in Peng et al. (2010). The fibre can rotate locally
due to the transverse shear deformation. Although the external nodal moments due
to the traction may be small, they are required to calculate the local rotation of the
fibre and cannot be neglected. If iso-parametric elements are used for both FEM and
BEM, due to the external nodal moment, the system will be over-determined, i.e. there
will be 3NFE unknowns (qfb

BE) but 6NFE equations (f fb
FE and mfb

FE). To deal with this
problem, in our coupling algorithm we use constant value elements in BEM. Instead of
solving (2.26), we employ a lumping technique for both the translational and rotational
degrees of freedom. This method is similar to the mass lumping technique in the
FEM with explicit time integration (Belytschko et al. 2000). It takes the external
nodal moment into account when calculating the traction, and it also simplifies the
numerical implementation by avoiding solving linear equations. The validation in § 3.1
will show that this coupling algorithm is accurate in capturing both the in-plane
membrane behaviour and the bending resistance, despite the fact that it does not
strictly follow the principle of virtual work. Detailed description of this lumping
technique is provided in Appendix.

Finally, the procedure of the staggered coupling algorithm is summarized as
follows:

(a) generate the FE and BE meshes based on the geometry;

(b) get the internal forces and moments of the shell elements based on the
deformation at time step n (described in § 2.2.2) and the constitutive laws
(described in §§ 2.2.3 and 2.2.4), and subtract external forces and moments from
the skeleton–bilayer interaction (described in § 2.3) to obtain the fluid–structure
interaction forces and moments on the interface;

(c) project the interaction forces and moments to surface tractions on the boundary
elements using the lumping technique (described in Appendix);

(d) apply (2.24) to obtain the velocities of the collocation points of the boundary
elements (described in § 2.2.5); if Λ 6= 1, the method of successive substitutions is
needed to solve the equations;

(e) project the velocities of boundary element collocation points to finite element
nodal velocities and calculate the local nodal angular velocities based on the
external nodal moments (described in Appendix);

(f ) update coordinates at time step n + 1 using explicit time integration with finite
element nodal velocities and update the fibre directions (described in Appendix);
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(g) return to step (b) and repeat the calculation for the new configuration at time step
n+ 1.

It is noteworthy that although we obtain the nodal external forces and moments from
the imposed displacements and rotations based on the configuration at time step n
using the FEM, the displacement is solved at the new configuration at time step n+ 1,
which is consistent with the statement of the variational form (2.9).

2.3. Cytoskeleton dynamics
The motion of the cytoskeleton is determined through its constitutive equations, its
elastic interaction with the lipid bilayer, its viscous friction with the lipid bilayer
via the transmembrane proteins, and its hydrodynamic interaction with the lipid
bilayer via the cytoplasm. Hereby we only consider the hydrodynamic loads upon the
cytoskeleton, whereas its influence on the surrounding flow field is not considered.
Owing to the closeness of the cytoskeleton to the lipid bilayer, it is reasonable
to assume that the cytoplasm near the lipid bilayer, in which the cytoskeleton is
immersed, moves at the same speed as the lipid bilayer. In that sense, the interaction
between the cytoskeleton and the cytoplasm can be merged with the cytoskeleton’s
interaction with the lipid bilayer. The balance of internal forces and external forces of
the cytoskeleton leads to τ bs + ts = 0, where τ bs is the total interaction force per unit
area between the lipid bilayer and the cytoskeleton (applied on the skeleton), and ts is
the internal force per unit area of the cytoskeleton due to its internal stress Θ s. Vector
ts is calculated using the FEM, whereas Θ s is presented in § 2.2.3.

For convenience we also use the shell element formulation presented in § 2.2.2
to model the cytoskeleton. One Gaussian integration point is used in the thickness
direction so that the shell elements are actually reduced into membrane elements
without bending stiffness. Thus, the rotational degrees of freedom of the shell elements
do not need to be considered for the cytoskeleton. Numerically, ts is calculated at the
nodes via dividing the nodal forces by the nodal areas.

After ts and τ bs are obtained, the velocity of the cytoskeleton is calculated as
follows. A local Cartesian system is defined so that z is in the normal direction of
the cytoskeleton surface, x and y are tangential to the surface. The skeleton velocity,
vs = [vs

x v
s
y v

s
z]T, is obtained as

vs
x =

τ bs
x

cf + cxy
+ vb

x , (2.27)

vs
y =

τ bs
y

cf + cxy
+ vb

y , (2.28)

vs
z = vb

z , (2.29)

where vb = [vb
x v

b
y v

b
z ]T is the velocity vector of the lipid bilayer, cf is the viscous

friction coefficient between the lipid bilayer and the cytoskeleton, which will be
formulated in § 2.3.1, and cxy and cz are tangential and vertical hydrodynamic drag
coefficients, which will be formulated in § 2.3.2. Strictly speaking, cf is applied in
front of the relative velocity between the skeleton and the lipid bilayer, whereas
cxy should be applied in front of the relative velocity between the skeleton and the
cytoplasm. However, in the vicinity of the lipid bilayer these two are close to each
other owing to the no-slip condition. For this reason in the current study we do
not distinguish them. Equation (2.29) enforces the normal no-penetration condition
between the lipid bilayer and the cytoskeleton. Numerically, vs is calculated at the
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Erythrocytes in Stokes flow 313

node ‘a’ of the cytoskeleton mesh, while vb is calculated at the projection point of
node ‘a’ on the lipid bilayer mesh in the master–slave contact algorithm (Malone &
Johnson 1994; Peng et al. 2010). Note that although τ bs

z is not shown in (2.27)–(2.29),
it can be obtained using τ bs = −ts. Here τ bs

z includes both the elastic interaction
and the normal hydrodynamic interaction forces between the lipid bilayer and the
cytoskeleton.

After the velocity of the cytoskeleton is obtained, the coordinates of the cytoskeleton
are updated using explicit time integration (e.g. the explicit Euler method).

2.3.1. Viscous friction between the lipid bilayer and the cytoskeleton due to the mobilities
of the anchored proteins

By applying the Stokes–Einstein relation, the drag force on a protein anchored in
the lipid bilayer is given as

f =− v
bT
=−kBTv

DT
, (2.30)

where v is the translational velocity of the protein. The minus sign refers to
the fact that the drag force is in the opposite direction of the velocity. Constant
DT is the translational diffusivity of the protein. Constant bT is the translational
mobility of the protein. Constant kB = 1.38 × 10−23 J K−1 is the Boltzmann constant
and T is the absolute temperature. The translational microscopic diffusivities of
band 3 and glycophorin C in the lipid bilayer are measured experimentally as
0.0014–0.022 µm2 s−1 (normal intact human RBCs) (Kodippili et al. 2009) and
4.0 µm2 s−1 (Kapitza et al. 1984), respectively. Note that for band 3 two different
diffusivities have been reported. One of them, the microscopic diffusivity, corresponds
to a short time diffusion coefficient when band 3 only diffuses within one Sp
compartment. The other, the macroscopic diffusivity, is a long time diffusion
coefficient when band 3 can diffuse from one Sp compartment to another by crossing
Sp barriers (Kodippili et al. 2009). In our study we use the microscopic diffusivity of
normal intact RBCs, because when we model the bilayer–skeleton slip, we consider
the motion of the whole JC including the band 3 so that the band 3 does not cross Sp
barriers. In the following simulations we use the upper bound of the measured value of
this property (i.e. 0.022 µm2 s−1).

Thus, the drag forces on a band 3 and a glycophorin C are fB =
−0.194 pN s µm−1 V and fG = −0.001 pN s µm−1 V, respectively. The drag force on
a glycophorin C is much smaller than that on a band 3.

In our problem, the translational velocity v of the proteins is equal to the relative
tangential velocity between the lipid bilayer and the cytoskeleton. Considering 33 000
JCs with three band 3 (since the band 3’s are shared by neighbouring JCs) and six
glycophorin C per JC in a total area of 135 µm2 (the surface area of a normal human
RBC) with a normal human temperature T = 310 K. The friction coefficient between
the lipid bilayer and the cytoskeleton per unit area is then calculated as

cf =− ρ
ρ0

(fB/v + 2fG/v)× 3× 33 000
135 µm2

= ρ

ρ0
· 144 pN s µm−3, (2.31)

where ρ and ρ0 are the current and initial protein densities of the cytoskeleton.
The protein density is defined as the number of proteins per unit area. The
factor ρ/ρ0 is associated with cytoskeleton deformation and its effect upon the
density of skeleton–bilayer pinning points (i.e. transmembrane proteins). This ratio
also represents the density of skeleton-attached proteins, whose variations are
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experimentally measurable (see for example Discher et al. 1994). In practice, this
density ratio is determined as ρ/ρ0 = 1/(λ1λ2), where λ1 and λ2 are principal in-plane
stretches of the cytoskeleton. In our model, λ1 and λ2 are readily determined through
FEM simulations of the inner layer (Peng et al. 2010).

For erythrocytes affected with the hereditary spherocytosis (spherocytes), Perrotta
et al. (2005) found that the density of band 3 was ∼12± 4 % of that of healthy RBCs
(Butler, Mohandas & Waugh 2008, see also). Kodippili et al. (2009) found that the
average microscopic diffusivity of the band 3 in human spherocytes is a little bit larger
than those in normal human RBCs, but they are in the same order. According to (2.31)
and (2.30), both decreased density and increased diffusivity of the band 3 will decrease
the bilayer–skeleton friction coefficient. Based on the decreased band 3 density, we
estimate the bilayer–skeleton friction coefficient in spherocytes as

c′f = 10 % cf = ρ

ρ0
· 14.4 pN s µm−3. (2.32)

Incidently, Sheetz, Schindler & Koppel (1980) showed that the translational
macroscopic diffusivities of integral membrane proteins were increased by 50 times in
mouse spherocytic RBCs. However, the macroscopic diffusivity depends significantly
on protein–protein interactions. In addition, mouse RBCs may be different from human
RBCs. Therefore, we do not use this value in our simulations.

Note that in these estimations we do not consider the fluid dynamics interactions
among the transmembrane proteins as well as their interactions with the skeleton
through the cytosol. This approximation is accurate when the protein density is low. To
accurately account for these effects, in future work a three-dimensional fluid–structure
interaction model for the interaction among the skeleton, the transmembrane proteins,
the lipid bilayer and the cytosol is required.

2.3.2. Hydrodynamic drag on the cytoskeleton
Although the cytoskeleton is a porous network with three-dimensional structure, for

computational efficiency when considering its interaction with the surrounding fluid
we simplify it as a planar triangular network (i.e. only the Sps are considered). The
overall drag is calculated as the summation of drag forces on each individual Sp,
and the hydrodynamic interactions between Sps are not considered. Specifically, we
consider each Sp as a cylindrical bar with length l and radius r immersed in infinite
Stokes flow.

Hereby the drag coefficients are defined as f⊥ = −c⊥v⊥ and f‖ = −c‖v‖, where f⊥
is the transverse drag (i.e. the drag perpendicular to the cylinder axis), f‖ is the
longitudinal drag (the drag parallel to the cylinder axis), v⊥ is the transverse velocity
component, and v‖ is the longitudinal velocity component. If ε = r/l� 1, then

c⊥ = 4πη2l

ln
(

l

r

)
+ 1

2

[1+ O(ε2)], (2.33)

c‖ = 2πη2l

ln
(

l

r

) [1+ O(ε2)], (2.34)

where η2 = 6 cP= 0.006 pN µm−2 s is the viscosity of the interior cytoplasm solution.
Note that for ε� 1, c⊥ ∼ 2c‖. For a Sp tetramer (i.e. two Sp dimers linked by head-to-
head connection), the length is l = 75 nm and the radius is around r = 1 nm.
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Thus the drag coefficients are estimated as c⊥ = 1.174 × 10−3 pN s µm−1 and
c‖ = 0.655× 10−3 pN s µm−1.

We now consider a perfect triangle with length l on each side located inside the xy
plane moving in a Stokes flow with a velocity v= [vx, 0, vz]. The y direction is chosen
to be in the triangle plane and perpendicular to the moving direction and z direction is
chosen to be the normal direction to the triangle. We assume that the total drag on this
triangle equals the sum of the drags on the three edges.

A simple calculation shows that the in-plane drag f∆,x of the triangle is isotropic
(independent of the orientation of the triangle) and no lateral force (force in the y
direction) is generated. The drags are calculated as f∆,x =−3/2(c⊥ + c‖)vx =−(2.74×
10−3 pN µm−1 s) vx, f∆,y = 0 and f∆,z =−3c⊥vz =−(3.52× 10−3 pN µm−1 s)vz.

For a cytoskeleton network with a total area of 135 µm2, there are 33 000 actin
protofilaments. Each protofilament is in connection with six Sp tetramers, whereas
each tetramer is connected with two protofilaments. Based on this, there should be
33 000 independent triangles (such as that described above) in the network. Therefore,
the tangential drag force of the network per unit area is

cxy =− ρ
ρ0
· 33 000/135 µm2, f∆,x/vx = ρ

ρ0
· 0.67 pN s µm−3, (2.35)

and the normal drag force of the network per unit area is

cz =− ρ
ρ0
· 33 000/135 µm2, f∆,z/vz = ρ

ρ0
· 0.86 pN s µm−3. (2.36)

These hydrodynamic drags are included in τ bs and transferred to the lipid bilayer
through the boundary condition (2.8). Note that cf � cxy, i.e. the bilayer–skeleton
viscous friction is much larger than the hydrodynamic drag in the tangential direction.
Strictly, the wall effect of the lipid bilayer on the motion of Sps should be
considered. In practice, however, since the hydrodynamic drag is much smaller than
the bilayer–skeleton viscous friction, the current approach is sufficiently accurate.

3. Results
3.1. Model validations

The models at different levels in our multiscale approach have been tested extensively
through comparisons with experiments as well as other theoretical and numerical
studies. For example, the level I model has been validated by comparing the predicted
tension-elongation curves of Sps with AFM measurements by Rief et al. (1999) (Zhu
& Asaro 2008). The level II model of JC is tested by comparing the predicted
orientations of the actin protofilaments and shear stiffness with various experiments
(Zhu et al. 2007). In Peng et al. (2010), we tested the multiscale model by comparing
with micropipette aspirations (see for example Waugh & Evans 1979) and optical
tweezers experiments (see for example Dao et al. 2006). In those validations, we
not only compared the overall cell deformation, but also the experimentally measured
skeleton density variation (Discher et al. 1994). In addition, we have compared the
resting cell shape with theoretical predictions by Seifert et al. (1991). In all of these
cases our numerical predictions agree well with benchmark results.

The fluid–structure interaction model is validated by simulating two canonical
cases: (a) RBCs passing through a cylindrical tube and (b) a spherical capsule and
an RBC in shear flow with low shear rates. The predictions are then compared
with benchmark results from previous studies. To be consistent with these existing
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FIGURE 4. (a) The shape of RBCs passing through a cylindrical tube driven by flow.
(b) Distributions of membrane tensions in meridional and azimuthal directions along the
arc length (compared with Pozrikidis 2005). The tensions are normalized by ηUm.

studies, in this validation work we consider a reduced version of our model: a single-
layer continuum model, in which the cell membrane is modelled as a single-layer
structure (i.e. the detailed bilayer–skeleton architecture is not specified) with uniform
mechanical properties. Furthermore, the mechanical parameters and the constitutive
relations are kept the same as those in the corresponding previous studies to be
compared with.

First, we simulate a file of RBCs passing through a cylindrical tube (which
resembles cell motion inside capillaries) and compare our results with the predictions
by Pozrikidis (2005). As shown in figure 4(a), the problem is considered to be
axisymmetric with respect to the x axis (the centreline of the tube). Here y represents
the distance measured from the centreline towards the boundary of the tube. As
discussed in § 2.2.5, in axisymmetric cases the Green function is spatially periodic
so that the method is capable of simulating an infinite sequence of cells without
additional computational effort. The cell membrane is described by the Skalak law
(Skalak et al. 1973) defined as

Θ1h= GSK

λ1λ2
{λ2

1(λ
2
1 − 1)+ C(λ1λ2)

2[(λ1λ2)
2 − 1]}, (3.1)

Θ2h= GSK

λ1λ2
{λ2

2(λ
2
2 − 1)+ C(λ1λ2)

2[(λ1λ2)
2 − 1]}, (3.2)

where GSK is the shear modulus and C is a material coefficient. In the limit of
small deformation, the area dilatation modulus K is given by (Barthès-Biesel, Diaz &

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

33
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f I

lli
no

is
 a

t C
hi

ca
go

 L
ib

ra
ry

, o
n 

05
 S

ep
 2

02
1 

at
 2

3:
56

:2
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2011.332
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Erythrocytes in Stokes flow 317

x

¯

y 1

B

A

s

M

f

2

st xy

FIGURE 5. Schematic of an RBC (or capsule) in simple shear flow.

Dhenin 2002; Omori et al. 2011)

K = GSK(1+ 2C). (3.3)

To validate our numerical algorithm by comparing results from Pozrikidis (2005),
we use the same values of material properties as in Pozrikidis (2005), i.e. GSK =
2.1 pN µm−1, C = 100.0 and bending stiffness κc = 1.8 × 10−19 J. We use L/a = 3.0,
b/a = 1.0, G = 0.5, where L is the space between periodic cells (see figure 4a),
a = (3V/4π)1/3 ≈ 2.82 µm is the equivalent cell radius (V ≈ 98 µm3 is the cell
volume) and b is the tube radius. The undisturbed velocity profile v̄f is a parabolic
function of y with the maximum speed is reached at y = 0. We define G = ηUm/2GSK

as the reduced flow rate, where Um is the maximum undisturbed flow velocity and
η = η1 = η2 = 1.2 cP= 0.0012 pN µm−2 s is the fluid viscosity.

The predicted shape of the RBCs is shown in figure 4(a), which is graphically
indistinguishable from that obtained in Pozrikidis (2005) (see figure 8 in that
paper). The distributions of membrane tensions in both the meridional and azimuthal
directions along the ar clength s are shown in figure 4(b), which again demonstrate
consistency with the study of Pozrikidis (2005). The arc length s is measured from the
front point as shown in figure 4(a). The total arc length st is measured from the front
point to the trailing point. The tensions are normalized by ηUm.

Second, we simulate the motion of a spherical capsule in a simple shear flow
with undisturbed velocity ky in the horizontal direction, where k is the shear rate
and the centre of the cell lies at y = 0 (see figure 5). In this simulation, both the
mechanical parameters (G = ηka/µ = 0.20, where a is the equivalent radius and µ

is the shear modulus of the membrane, and Λ = 1) and the constitutive law of the
capsule with an energy function of a neo-Hookean form are taken from Ramanujan &
Pozrikidis (1998). This constitutive law, as well as its related surface strain invariants,
was originally derived by Barthès-Biesel & Rallison (1981). As shown in figure 6,
our results, in this case for the inclination angle θxy of the maximum dimension with
respect to the x axis in the xy plane (the mid-plane) and the Taylor deformation
parameter Dxy = (A− B)/(A+ B) (A,B are the maximum and minimum dimensions in
xy plane; see figure 5 for definitions of θxy, A, and B), match well with the reported
data in Ramanujan & Pozrikidis (1998). In practice, to calculate A and B we adopt
the approach suggested by Ramanujan & Pozrikidis (1998). The basic procedure is:
(a) calculate the inertia tensor of the cell or the capsule; (b) calculate the dimensions

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

33
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f I

lli
no

is
 a

t C
hi

ca
go

 L
ib

ra
ry

, o
n 

05
 S

ep
 2

02
1 

at
 2

3:
56

:2
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2011.332
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


318 Z. Peng, R. J. Asaro and Q. Zhu

kt

Current simulation
Ramanujan & Pozrikidis (1998)

D
xy

xy
 (°

)

5
10
15
20
25
30
35
40
45

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
kt

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Current simulation
Ramanujan & Pozrikidis (1998)

(b)(a)

FIGURE 6. (a) The inclination angle and (b) the Taylor deformation parameter as functions
of time.
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FIGURE 7. Cell shapes (top) and profiles in the xy plane (bottom) at (a) kt = 0, (b) kt = 4,
(c) kt = 8.15 and (d) kt = 11.80.

of an equivalent triaxial ellipsoid with the same inertia tensor; (c) calculate A and B of
this ellipsoid, and use these to find Dxy of the cell.

Finally, we simulate the tumbling motion of an RBC in a shear flow by
incorporating both bending stiffness and area stiffness of its membrane, and compare
our results with those in Pozrikidis (2003b). The constitutive law used here is the
same as in Pozrikidis (2003b), which is similar to that for capsules in Ramanujan &
Pozrikidis (1998) but with an extra area stiffness term. The reduced shear rate G= 0.1,
the bending stiffness kc = 1.8 × 10−19 J, the shear modulus µ = 3 pN µm−1, and the
normalized area stiffness K/η1ka = 200, where K is the area stiffness. Following
Pozrikidis (2003b), we use Λ = 5 (η2 = 0.006 pN µm−2 s). Figure 7 shows snapshots
of the cell motion/deformation as well as the cell profiles in the xy plane. These results
are very close to the predictions by Pozrikidis (2003a,b) (see figure 4a in that paper).
The corresponding time evolution of the inclination angle is plotted in figure 8, which
agrees well with Pozrikidis (2003b).

To further illustrate the accuracy of the bending resistance in our coupling algorithm,
we consider another case with a smaller bending stiffness kc = 4.5 × 10−20 J. Other
parameters remaining unchanged. The time evolution of the inclination angle in this
case is also plotted in figure 8. It is seen that with a smaller bending stiffness, the
result becomes significantly different.

In addition, we also compare our double-layer multiscale model with the single-
layer continuum model for tumbling motion as shown in figure 8. To compare with
the result by Pozrikidis (2003b), we scale the initial shear modulus of our multiscale
model to µ = 3 pN µm−1. We consider two cases in the multiscale model: one with
membrane viscosity and the other without membrane viscosity. It is seen the tumbling
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FIGURE 8. Evolution of the inclination angle θxy during the tumbling motion of an RBC. The
result is compared with the prediction by Pozrikidis (2003b).

rate of our multiscale model is a little bit faster than the simple continuum model
due to the strain stiffening effect. Furthermore, the effect of membrane viscosity on
tumbling motion is small.

The multiscale structural model has been validated extensively in Peng et al.
(2010), in which it was applied to simulate quasi-static responses of RBC induced
by optical tweezers or micropipettes (micropipette aspirations). In optical tweezers
experiments, a pair of beads are attached to the cell (one on each side). The motions
of these beads are controlled by laser beams, and the stretching force applied by
these beads can be experimentally calibrated. Through systematic measurements (Dao
et al. 2006), the cell deformation has been correlated with the force imposed by the
tweezers. In micropipette aspirations, an RBC is partially sucked into a micrometre-
size pipe (i.e. a micropipette) with negative pressure inside it. The length of the cell
entering the pipette is linearly related with the imposed pressure (see for example
Waugh & Evans 1979). With fluorescent protein marking, the density variation of the
cytoskeleton (which represents area deformation) was also measured (Discher et al.
1994). A coarse-grained model has been developed to duplicate the observed skeleton
deformation (Discher et al. 1998). With our multiscale model, we have studied overall
cell deformation as well as area and shear deformation of the cytoskeleton in both
cases. All of our predictions are quantitatively consistent with the aforementioned
experimental measurements and numerical simulations.

In the following we apply the fluid–structure coupled multiscale model to examine
the deformation of the cytoskeleton (which is related to the mechanical loads inside
it), and the interaction forces between the lipid bilayer and the skeleton in both
tangential and normal (i.e. vertical with respect to the lipid bilayer) directions in the
aforementioned scenarios associated with Stokes flows (inside a tube and a shear flow).
We also study the area deformation and the shear deformation of the skeleton.

3.2. Cytoskeleton deformation and internal force inside an RBC in a tube
Using our multiscale model, we herein predict the protein density of the skeleton and
the interaction force between the lipid bilayer and the skeleton in RBC membranes
in a tube flow (figure 9b). The cell profile, as well as the surrounding flow fields
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inside and outside of the cells, is shown in figure 9(a). For flow conditions, we use
the same parameters as in § 3.1, e.g. L/a = 3.0, b/a = 1.0, G = 0.5 and a = 2.82 µm.
The parameters of the cytoskeleton, including the persistence lengths of folded and
unfolded domains in Sp, the contour lengths of the folded and unfolded domains,
the difference between the activation length of the unfolding process and that of the
refolding process, and the force corresponding to the state when half of the domains
are unfolded, are obtained from Peng et al. (2010). Lac & Barthès-Biesel (2005)
and Lefebvre & Barthès-Biesel (2007) showed that the membrane prestress plays an
important role for RBC motions in both tube flow and shear flow. To match the
skeleton density variation recorded in micropipette aspirations, the prestress of the
cytoskeleton is set to be T̄0 = T̄|λ1=1,λ2=1 = −30 pN µm−1 (Peng et al. 2010). The
spontaneous curvature of the bilayer is assumed to be zero, i.e. in its unloaded state a
piece of lipid bilayer remains flat. Since in this particular case we only focus on the
final steady configuration, the membrane viscosity, the bilayer–skeleton friction and the
plasma viscosity contrast are irrelevant.

Figure 9(b) shows the distribution of the density ratio along the arclength s. It is
seen that the skeleton is expanded (ρ/ρ0 < 1) at the head region (the head of the bullet
shape) and the trailing region (the bottom), whereas it is compressed (ρ/ρ0 > 1) at
the side of the cell that is almost parallel to the tube wall (0.3 < s < 0.6). A slight
variation of the density ratio occurs at the edge formed between the bottom and the
side (s ∼ 0.7). The increase of protein density near the wall (0.3 < s < 0.6, e.g. point
B) as shown in figure 9(a) and (b) might help facilitate the biochemical interaction
between the RBC cytoskeleton and the endothelial cells on the vessel wall. Indeed,
it has been showed that RBCs can release nitric oxide (NO) (Kleinbongard et al.
2009) to dilate the blood vessel and improve blood perfusion, as well as adenosine
triphosphate (ATP) to regulate blood pressure (Wan, Ristenpart & Stone 2008).

The normal interaction force between the lipid bilayer and the skeleton is also
plotted in figure 9. No tangential force exists since the sliding between the lipid
bilayer and the cytoskeleton has been already finished before this final steady
configuration. The quantity we show is the interaction force applied on one JC, which
is obtained as the product between the interaction force per unit area τ bs and the area
of one JC after the deformation of the skeleton in that particular location as

f jc =
135 cm2

33 000
ρ0

ρ
τ bs. (3.4)

This force is negative when 0 < s < 0.8 (a negative normal interaction force refers
to the scenario when the skeleton and bilayer tend to separate from each other
(dissociation tendency)). The maximum negative interaction force occurs at the trailing
edge of the bullet shape as shown as point A in figures 9(a) and (b). For 0.8 < s < 1,
this force is positive, i.e. the skeleton and bilayer are pushed towards each other
(association tendency).

A noteworthy phenomenon is that in tube flow (capillary flow) both the protein
density variation and the bilayer–skeleton interaction forces are much lower than
those during the micropipette aspiration experiments. During micropipette aspirations,
the maximum interaction force per JC (i.e. the force that induces bilayer–skeleton
separation) is 5–20 pN as shown in Peng et al. (2010), whereas in capillary flow the
value is less than 0.3 pN. This may help explain the structural stability and durability
of RBCs when they pass through the capillaries.

In addition, we also carried out a comparison between our multiscale model and
the aforementioned single-layer continuum model. In this case, for the single-layer
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FIGURE 9. (a) The cell profile and the flow field, (b) the protein density ratio ρ/ρ0 and the
normal interaction force acting on each JC when RBCs passing through a cylindrical tube
and (c) comparison of shear deformation between the multiscale model and the single-layer
continuum model.
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continuum model, we employ the constitutive law as shown in (2.15) without viscosity.
The shear modulus µ = 6 pN µm−1 and the area modulus K = 5 × 105 pN µm−1 are
obtained from the literature (Mohandas & Evans 1994).

In figure 9(c), we compare the shear deformations predicted by the multiscale model
and this continuum model. The magnitudes of the shear ratio are in the same range,
but the distribution of the shear ratio shifts. The bilayer–skeleton interaction force
cannot be obtained by using this single-layer model. In addition, in this single-layer
model the protein density is constant due to the areal incompressibility (K� µ).

In these axisymmetric simulations of capillary flow, 100 linear axisymmetric shell
elements were used for the lipid bilayer, 100 linear axisymmetric shell elements were
used for the cytoskeleton and 100 constant boundary elements were used for the lipid
bilayer. Time step size is 2×10−7 s and it takes 0.015 s to reach the steady-state shape
starting from a biconcave shape. Such a case takes several hours of computational time
to simulate on a single Intel 2.5 GHz CPU.

3.3. Tank-treading motion in shear flow
In § 3.1, we discussed the tumbling motion of RBC in shear flow. When the shear
rate is sufficiently large, however, these cells may demonstrate a new type of response
called tank-treading motion, in which a RBC deforms to an ellipsoidal shape and the
membrane circulates around while the inclination angle remains almost unchanged.

To simulate this tank-treading response, we use the same parameters as in § 3.2. The
viscosity of the internal fluid η2 = 6 cP= 0.006 pN µm−2 s.

In figure 10, we compare the predicted tank-treading frequency (defined as the
inverse of the period for a point on the membrane to complete one circle around
the cell) with the experimental measurements by Fischer, Stöhr-Liesen & Schmid-
Schönbein (1978). We show the relations between shear rate and tank-treading
frequency with external fluid viscosities 13, 31 and 59 cP. It is seen that the tank-
treading frequency increases linearly with the shear rate. Furthermore, our results
demonstrate an increase in the ratio of tank-treading frequency to shear rate when the
external fluid viscosity is increased. These features are consistent with experiments
by Tran-Son-Tay (1983) and Fischer (2007), and the numerical results by Dodson &
Dimitrakopoulos (2010). If the membrane viscosities are neglected (νb = νs = 0), then
the frequency is overestimated as shown in figure 10. This is consistent with the result
by Fedosov et al. (2010). All of the data points from the simulations are shown in
circles.

We also compare tank-treading motions predicted by our multiscale model with
those predicted by the single-layer continuum model with constitutive law as shown
in (2.15) (µ= 6 pN µm−1 and K = 5 × 105 pN µm−1). The difference in tank-treading
frequency between predictions of the multiscale model and the single-layer continuum
model is small.

In the following simulations we consider two typical in vivo shear rates, 270 and
1640 s−1; 270 s−1 is considered as the average shear rate and 1640 s−1 is considered
as the peak shear rate in human body (Stroeva, Hoskinsb & Eassona 2007) or in
an artificial heart (Hochareon 2003; Deutsch et al. 2006). Our results show that for
both shear rates, the areal dilatation and protein density variation of the cytoskeleton
are less than 3 % everywhere if the friction coefficients derived in § 2.3 are used.
This is in contradiction with simulation results by Dodson & Dimitrakopoulos (2010),
in which measurable cytoskeleton areal dilatation was predicted. The primary cause
of this discrepancy is the inclusion of dissipation effects. Specifically, in the model
by Dodson & Dimitrakopoulos (2010), neither the bilayer–skeleton friction nor the
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FIGURE 10. The tank-treading frequency as a function of the shear rate for different blood
plasma viscosities and membrane viscosities. The results are compared with experimental
measurements by Fischer et al. (1978). The data points from the simulations to construct the
lines are shown in circles.

membrane viscosity is considered. Our simulations confirm the prediction by Fischer
(1992) that during normal physiological conditions the tank-treading motion is too fast
to allow significant bilayer–skeleton slip.

In figure 12, we compare the area variation of our multiscale model with Dodson
& Dimitrakopoulos (2010) at a low shear rate k = 22.16 s−1. Following Dodson &
Dimitrakopoulos (2010), we simulate an RBC in shear flow with capillary number
Ca = η1ka/µs = 1.5, Λ = 0.1, µs = 2.5 pN µm−1 and η1 = 0.006 pN µm−2 s. It is
seen that the areal variation of the middle point on the upper dimple (point M as
shown in figure 5) is much smaller than that obtained by Dodson & Dimitrakopoulos
(2010). Note that we herein used the upper bound value of the microscopic diffusivity
measured by (Kodippili et al. 2009). If we use lower bound value, the areal variation
is even smaller. On the other hand, if we reduce the bilayer–skeleton friction
coefficient by 10 times, the agreement with Dodson & Dimitrakopoulos (2010) is
greatly improved. This may be the case for the hereditary spherocytosis, since Perrotta
et al. (2005) found that the density of band 3 was ∼12 ± 4 % of that of healthy
RBCs (Butler et al. 2008, see also). Kodippili et al. (2009) found that the average
microscopic diffusivity of the band 3 in human spherocytes was slightly larger
than that in normal human RBCs (the two are of the same order of magnitude).
According to (2.31) and (2.30), both decreased density and increased diffusivity of
the band 3 will decrease the bilayer–skeleton friction coefficient. The corresponding
bilayer–skeleton friction coefficient c′f is estimated as 10 % of the friction coefficient
cf of healthy RBCs as shown in § 2.3.1. The significant area variation of the case
for the hereditary spherocytosis in figure 12 may help explain the hypothesis of
the lipid bilayer loss due to significantly decreased protein density in the hereditary
spherocytosis (Walensky et al. 2003).

Our simulations also demonstrate swinging motions of the cell, referring to
variations of the inclination angle θxy and the cell shape (characterized by the Taylor
deformation parameter Dxy) over time. The time histories of θxy and Dxy at shear rates
of 270 s−1 and 1640 s−1 are shown in figure 11. For the shear rate of 270 s−1, the time
period of swinging motion is found to be 0.08 s, which is half of the time period of
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FIGURE 11. Time histories of θxy and Dxy during swinging motions: (a) k = 270 s−1,
η1 = 13 cP; (b) k = 1640 s−1, η1 = 13 cP.
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(point M as shown in figure 5). The results are compared with the prediction by Dodson &
Dimitrakopoulos (2010) (Ca= η1ka/µs = 1.5 and Λ= 0.1).

the tank-treading motion (0.16 s) (figure 10). This is consistent with the conclusions
by Ramanujan & Pozrikidis (1998) and Fedosov et al. (2010).

Contours of the shear ratio
√
λ1/λ2 as well as the tangential and normal interaction

forces between the lipid bilayer and the cytoskeleton are shown in figure 13. The
shear rate is 270 s−1, and the external fluid viscosity η1 = 13 cP. The corresponding
vector field of the tangential interaction forces (the interaction forces on the lipid
bilayer) is shown in figure 14. The in-plane flow velocity field within the x–y cross
section is shown in figure 15. Note that on the cell surface the streamlines are not
exactly coincident with the cell profile because there is a swinging motion. The flow
velocity field is continuous across the membrane due to the no-slip condition, whereas
the stress field is discontinuous across the membrane (shown as 1t f in (2.18)). The
corresponding contours for shear rate 1640 s−1 are shown in figure 16. Incidently, the
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FIGURE 13. Contours (top view and side view) of (a) the shear ratio
√
λ1/λ2, (b) magnitude

contour of the tangential interaction force per JC and (c) magnitude contour of the normal
interaction force per JC. k = 270 s−1, η1 = 13 cP. Contours are shown at the instant when Dxy
reaches the maximum value.

cell shapes shown in figures 13 and 16 match well with the experimental pictures as
shown in figure 4.4.2 in Pozrikidis (2003a).

The results show that in both cases the minimum shear ratios happen at the tips of
the cell and their values are close to 1. The maximum shear ratio is 1.589 for shear
rate 270 s−1 and 2.120 for shear rate 1640 s−1, occurring near the middle region of the
cell but off from the centre plane (the xy plane).

For the tangential interaction force, the maximum values occur at the tips of the
cell (0.042 pN per JC for shear rate 270 s−1 and 0.313 pN per JC for shear rate
1640 s−1). In the top view of the vector field (figure 14) it is seen that there are points
(P and Q) where the tangential interaction force changes direction. In figure 14, the
bilayer–skeleton interaction force on the lipid bilayer instead of on the skeleton is
shown for clarity.
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z

x Q p

FIGURE 14. Vector field of the tangential interaction force applied on the lipid bilayer,
k = 270 s−1, η1 = 13 cP. It is shown at the time when Dxy reaches the maximum value.

x

y

FIGURE 15. The flow velocity field around the cell, k = 270 s−1, η1 = 13 cP. It is shown at
the time when Dxy reaches the maximum value.

For normal interaction forces, the maximum value again occurs at the tips of the
cell (0.182 pN per JC for shear rate 270 s−1 and 0.551 pN per JC for shear rate
1640 s−1). Since we consider pre-compression of the cytoskeleton with prestress
T̄0 = −30 pN µm−1 (Peng et al. 2010), the cytoskeleton pushes the lipid bilayer
outwards. The normal interaction forces mainly depend on the prestress and the
curvature of the shape.

The distributions of the shear ratio and interaction forces along the cell profile
within the xy plane are shown in figures 17–19 for shear rates 270 s−1 and 1640 s−1.
In figure 18, positive value indicates that the force is towards the x direction and
negative value indicates that the force is towards the −x direction.

We also compare our multiscale model with the aforementioned single-layer
continuum model with constitutive law as shown in (2.15) (µ = 6 pN µm−1 and
K = 5 × 105 pN µm−1) for shear deformation with shear rate 270 s−1 as shown in
figure 17. The distribution of the shear deformation is similar, whereas the magnitude
of the shear ratio is slightly smaller in the multiscale model. This difference is likely
to be attributed to the strain-stiffening effect of the cytoskeleton included in our
multiscale model.

In the simulation of shear flow with shear rate 270 s−1, 1250 quadrilateral shell
elements were used for the lipid bilayer, 1250 quadrilateral shell elements were used
for the cytoskeleton and 1250 quadrilateral constant boundary elements were used
for the lipid bilayer. In the simulation of shear flow with shear rate 1640 s−1, 3000
quadrilateral shell elements were used for the lipid bilayer, 3000 quadrilateral shell
elements were used for the cytoskeleton and 3000 quadrilateral constant boundary
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z
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z

x

Tangential
interaction force

per JC (pN)

Shear ratio

1 2

Normal
interaction force

per JC (pN)
0.551

0.458

0.365

0.271

2.120

1.855

1.591

1.326

1.061

0.313

0.235

0.157

0.078

0

0.178

(b)

(c)

(a)

FIGURE 16. Contours (top view) (a) the shear ratio
√
λ1/λ2, (b) magnitude contour of the

tangential interaction force per JC and (c) magnitude contour of the normal interaction force
per JC. Here k = 270 s−1, η1 = 13 cP. Contours are shown at the time when Dxy reaches the
maximum value.

Normalized arc length s st
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k = 270  s–1 (single-layer continuum model)

k = 1640  s–1

FIGURE 17. Shear ratio in the cross section by the xy plane (shown at the time when Dxy
reaches the maximum value).

elements were used for the lipid bilayer. A typical case takes around several days to
simulate on a single 2.5 GHz Intel CPU. A typical time step size is 2× 10−6 s.

To better understand the distributions of the tangential and normal interaction forces,
we consider an infinitely small element of the cytoskeleton along the centre line
(the xy cross section) as shown in figure 20. The equilibriums of the cytoskeleton
(a membrane without bending stiffness) in the tangential direction and the normal
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FIGURE 18. Tangential interaction force per JC in the cross section by the xy plane (shown
at the time when Dxy reaches the maximum value). Positive value indicates that the force is
towards the x direction and negative value indicates that the force is towards the −x direction.
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FIGURE 19. Normal interaction force per JC in the cross section by xy plane (shown at the
time when Dxy reaches the maximum value).

direction (the Laplace’s law) lead to

∂Tx

∂s
+ f bs = 0, (3.5)

Tx

rx
+ Tz

rz
+ pbs = 0, (3.6)

where Tx = Θxh and Tz = Θzh, rx and rz are the radii of the curvatures in x and z
directions, respectively, f bs is the friction force per unit area (the component of τ bs

in the tangential direction) and pbs is the normal interaction force per unit area (the
component of τ bs in the normal direction).
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FIGURE 20. The equilibrium of an infinitely small element of the cytoskeleton at the centre
line (cross section by the xy plane).

There is almost no area change (λ1λ2 ≈ 1) in the cytoskeleton so that the
mean stress due to area change is extremely small (T̄ ≈ T̄0) and the shear ratio
γ = √λ1/λ2 ≈ λ1. Here T̄0 = −30 pN µm−1 is the prestress. If we ignore the
cytoskeleton viscosity temporarily (νs = 0), Tx and Tz can be written as

Tx = T̄0 + Tshear, (3.7)
Tz = T̄0 − Tshear, (3.8)

where Tshear = 0.5µs(γ
2 − 1/γ 2) is the shear stress as shown in (2.15) and (2.16).

Therefore (3.5) can be re-expressed as

f bs =−∂Tshear

∂s
=−∂Tshear

∂γ

∂γ

∂s
=−µs

2

(
2γ + 2

γ 3

)
∂γ

∂s
. (3.9)

Equation (3.9) relates the friction force f bs to the derivative of γ with respect to the
arc length s. This relation is demonstrated in figures 17 and 18. Indeed, it can be
shown that there are two points where the derivative of γ with respect to the arc
length s equals to zero in figure 17, corresponding to two points (P and Q) in figure 18
where the tangential force equals zero. The drifts of the two points in arclength
positions from figure 17 to figure 18 are caused by the cytoskeleton viscosity (νs 6= 0).

For normal interaction forces, if we ignore the cytoskeleton viscosity temporarily
(νs = 0), (3.6) can be rewritten as

T̄0

(
1
rx
+ 1

rz

)
+ Ts

(
1
rx
− 1

rz

)
+ pbs = 0. (3.10)

This relation explains characteristics of figure 19. At the convex tips the curvatures
(1/rx and 1/rz) are significantly larger than those in other places on the surface and Ts

is very small due to small shear (γ ≈ 1), therefore the maximum normal interaction
force pbs happens in the tips.

Although the cell shapes predicted in figures 13 and 16 match well with the
experiments, our simulations show significant swinging motions, while there is no
significant swinging motion based on the experimental pictures by Fischer et al.
(1978) and figure 4.4.2(b) of Fischer in Pozrikidis (2003a). A possible cause of
this discrepancy is the choice of the reference configuration of the cytoskeleton,
i.e. the configuration with zero shear deformation. In our simulations, we chose
the biconcave shape as the reference configuration, but existing studies (e.g. Lim,
Wortis & Mukhopadhyay 2002) suggest that the actual reference configuration may be
between the biconcave shape and the spherical shape. By deflating a spherical cell
into a biconcave shape first as we did in our previous work (Peng et al. 2010), we
simulate the tank-treading motion of this RBC with a spherical shape as its reference
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configuration. It is found that in this scenario there is almost no swinging motion.
This confirms the work by Tsubota & Wada (2010). On the other hand, the reference
shape may not be a perfect sphere for in vivo RBCs. According to the experiment
by Fischer (2004), RBCs have shape memory. This implies that the reference shape
of the cell is not perfectly spherical (otherwise all points on the membrane will be
indistinguishable so that there will be no shape memory). Thus, our results provide
indirect evidence that the reference configuration is between the biconcave shape and
the spherical shape.

4. Conclusions and discussion
The vital difference between our model and the existing models is the incorporation

of a multiscale structural model to describe the mechanical response of the cell
membrane, which enables predictions of not only highly accurate RBC responses to
external loads, but also the physical mechanisms involved in the dynamic response of
a cell at different temporal and spatial levels. The multiscale simulations illustrated
novel (and potentially important) phenomena in membrane mechanics that had never
been discovered using other models.

Compared with the continuum models, our multiscale approach does not require a
significantly larger computational cost. This is due to the fact that it is a hierarchical
information-passing multiscale algorithm, in which different models at different length
scales are simulated independently. The results from the lower level models (levels
I and II) are precalculated and used as a ‘database’ for the upper level model. It is
different from the concurrent multiscale algorithm, in which models at different levels
are simulated simultaneously at different regions so that computational cost is usually
very high. In addition, the computational cost of a double-layer model is almost the
same as a single-layer model, because the dominant cost is the boundary element part
of the lipid bilayer and the computational cost on the cytoskeleton is almost negligible.

Among the important phenomena that have been analysed are the remodelling
of protein density and the development of both positive (tensile) and negative
(compressive) forces that act between the lipid bilayer and the attached skeleton.
For example, in our previous investigations the development of negative contact forces
between the skeleton and the lipid bilayer, coupled with protein density changes,
was related to the phenomena of membrane necking and vesiculation during RBC
aspiration into a micropipette (Peng et al. 2010). During aspiration, however, large
variations in skeleton density are typically forecast as, in fact, found experimentally.
Density variations are easily in the range 0.2 < ρ/ρ0 < 1.4. Accompanying this is
the development of negative contact force (per JC) as large as ∼−20 pN. In contrast,
we show here that within tube flow and shear flow RBCs undergo quite modest
protein density variations as illustrated in the example simulation results shown in
figure 9 where 0.85 < ρ/ρ0 < 1.07. Likewise the local contact forces per JC are
also modest. The implication is that micropipette aspirations may exaggerate the
mechanical loading on RBC and the subsequent mechanical responses in most in
vivo conditions (e.g. inside capillaries or blood vessels).

On the other hand, RBCs may sustain much larger loads and deformations inside
spleen, where blood flows from the red-pulp cords (ends of the small arterioles) to the
venous sinuses and merges back into the venous system (Mebius & Kraal 2004). The
venous sinuses are made of parallel series of endothelial cells with slits between them.
Normal RBCs can pass through these slits, while aging, defected, or infected RBCs
may be stuck there, where they are phagocytosed by macrophages. Furthermore, the
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contractility of the stress fibres in the endothelial cells can control the opening of these
slits and assist the retention of RBCs in the spleen. Further studies are necessary to
illustrate these processes.

This work was supported by the National Heart, Lung and Blood Institute under
award number R01HL092793.

Appendix. FEM–BEM coupling algorithm

We consider a node ‘a’ with nodal force f (a) and moment m(a), which is connected
with n elements with indexes i = 1, . . . , n. To conserve the linear momentum, we
distribute finite element nodal forces f (a) to the connected neighbouring elements as
surface tractions based on the weights of element areas, i.e. q̄(a)i = f (a)/A(a), where q̄(a)i

is the surface traction on element i from node ‘a’ due to its nodal force, and A(a) is the
area sum of connected elements on node ‘a’.

To conserve the angular momentum, we distribute the nodal moments to the
neighbouring elements as force couples. Let ri denote the relative position vector
from the node ‘a’ to the collocation point (the centroid) of the element i, the moment
m(a)

i assigned to element i as

m(a)
i = R2

i ·W
−1
·m(a), (A 1)

where

Ri =

 0 −r̂i,3 r̂i,2

r̂i,3 0 −r̂i,1

−r̂i,2 r̂i,1 0

 , (A 2)

r̂i = ri − 1
n− 1

n∑
j=1(j6=i)

rj, (A 3)

and

W =
n∑

i=1

Ri
2, (A 4)

where r̂i,1, r̂i,2 and r̂i,3 are the three components of the vector r̂i.
We note that

∑n
i=1m

(a)
i = m(a) and m(a)

i · r̂i = 0, i.e. m(a)
i is perpendicular to r̂i,

which guarantees the existence of an equivalent force couple for m(a)
i associated

with position vector r̂i. This equivalent force couple is obtained by applying a force
f (a)′i = Ri ·W−1

·m(a) at the centre of this element while applying opposite sign forces
−f (a)′i /(n − 1) with zero net resultant at the centres of other connected elements. The
corresponding surface traction is

q(a)′ij =
f (a)′i /A(a)j if i= j

− 1
n− 1

f (a)′i /A(a)j if i 6= j,
(A 5)

where A(a)j is the area of element j connected to node ‘a’.
The total surface traction on an element is obtained by summarizing the

contributions from the nodal force and moment of all of its neighbouring nodes.
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Applying (2.24), the velocity at the element collocation point can be obtained. We
relate the nodal velocity v(a) and the velocity at the element collocation point vi by

v(a) = 1
A(a)

n∑
i=1

viA
(a)
i . (A 6)

The continuum-based shell element used here stems from the Reissner–Mindlin shell
theory (see Belytschko et al. 2000). In this approach, the fibre is not necessary to be
perpendicular to the shell reference surface, and it can rotate locally. The local fibre
rotation is determined based on the nodal moments as follows.

Let qfb′
BE denote the global surface traction vector attributed to the nodal moments,

we obtain the global velocity vector vfb′
BE at the element collocation point due to qfb′

BE as

vfb′
BE = (I − D)−1Sqfb′

BE. (A 7)

If node ‘a’ rotates locally as a rigid body with a local angular velocity ω(a), then the
velocity at the collocation point of connected elements can be written as

v′i − v(a)′ = ω(a) × ri =

 0 −ω(a)3 ω
(a)
2

ω
(a)
3 0 −ω(a)1

−ω(a)2 ω
(a)
1 0

 · ri, (A 8)

where

v(a)′ = 1
A(a)

n∑
i=1

v′iA
(a)
i . (A 9)

There are 3n equations but 3 unknowns (ω(a)1 , ω
(a)
2 , ω

(a)
3 , the three components of the

angular velocity vector at node ‘a’). A least square method is used to solve these
equations for ω(a).

After the nodal velocities and the local angular velocities are obtained, at each time
step we need to update both the locations of the nodes and the orientations of the
shell elements at the nodes (i.e. the ‘fibre orientation’ mentioned in Hughes & Liu
1981b). The nodal coordinates are updated using the explicit Euler method. Then the
fibre direction of node ‘a’, x′(a) (a unit direction vector), is updated first by averaging
the normals of connected elements based on the updated coordinates, then by applying
the local rotation ω(a) using Hughes–Winget’s formula as

x′(a) =Φ(a)x′(a), (A 10)

where

Φ(a) = (I − 1
2Ω

(a))−1(I + 1
2Ω

(a)), (A 11)

Ω(a) =

 0 −ω(a)3 1t ω
(a)
2 1t

ω
(a)
3 1t 0 −ω(a)1 1t
−ω(a)2 1t ω

(a)
1 1t 0

 , (A 12)

where 1t is the time step. For the axisymmetric case, a similar coupling algorithm is
developed to the above three-dimensional case.
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BARTHÈS-BIESEL, D. & RALLISON, J. M. 1981 The time-dependent deformation of a capsule freely

suspended in a linear shear flow. J. Fluid Mech. 113, 251–267.
BELYTSCHKO, T., LIU, W. & MORAN, B. 2000 Nonlinear Finite Elements for Continua and

Structures. Wiley.
BENNETT, V. & STENBUCK, P. J. 1979 The membrane attachment protein for spectrin is associated

with band 3 in human RBC membranes. Nature 280, 468–473.
BERK, A. A. & HOCHMUTH, R. M. 1992 Lateral mobility of integral proteins in red blood cell

tethers. Biophys. J. 61, 9–18.
BRUCE, L. J., BECKMANN, R., RIBEIRO, M. L., PETERS, L. L., CHASIS, J. A., DELAUNAY, J.,

MOHANDAS, N., ANSTEE, D. J. & TANNER, M. J. 2003 A band 3-based macrocomplex of
integral and peripheral proteins in the RBC membrane. Blood 101, 4180–4188.

BUTLER, J., MOHANDAS, N. & WAUGH, R. E. 2008 Integral protein linkage and the
bilayer-skeletal separation energy in red blood cells. Biophys. J. 95, 1826–1836.

CHANG, S. H. & LOW, P. S. 2001 Regulation of the glycophorin c-protein 4.1 membrane-
to-skeleton bridge and evaluation of its contribution to erythrocyte membrane stability.
J. Biol. Chem. 276, 22223–22230.

CHIEN, S. 1987 Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49,
177–192.

COHEN, C. M., TYLER, J. M. & BRANTON, D. 1980 Spectrin–actin associations studied by electron
microscopy of shadowed preparations. Cell 21, 875–883.

CRAIEM, D. & MAGIN, R. L. 2010 Fractional order models of viscoelasticity as an alternative in
the analysis of red blood cell (RBC) membrane mechanics. Phys. Biol. 7, 013001–013003.

DAO, M., LI, J. & SURESH, S. 2006 Molecularly based analysis of deformation of spectrin network
and human erythocyte. Mater. Sci. Engng C26, 1232–1244.

DAO, M., LIM, C. T. & SURESH, S. 2003 Mechanics of the human red blood cell deformed by
optical tweezers. J. Mech. Phys. Solids 51, 2259–2280.

DEUTSCH, S., TARBELL, J. M., MANNING, K. B., ROSENBERG, G. & FONTAINE, A. A. 2006
Experimental fluid mechanics of pulsatile artificial blood pumps. Annu. Rev. Fluid Mech. 38,
65–86.

DISCHER, D. E., BOAL, D. H. & BOEY, S. K. 1998 Simulations of the erythrocyte cytoskeleton at
large deformation. Biophys. J. 75, 1584–1597.

DISCHER, D. E., MOHANDAS, N. & EVANS, E. A. 1994 Molecular maps of red cell deformation:
hidden elasticity and in situ connectivity. Science 266, 1032–1035.

DODSON, W. R. & DIMITRAKOPOULOS, P. 2010 Tank-treading of erythrocytes in strong shear
flows via a nonstiff cytoskeleton-based continuum computational modelling. Biophys. J. 99,
2906–2916.

EGGLETON, C. D. & POPEL, A. S. 1998 Large deformation of red blood cell ghosts in a simple
shear flow. Phys. Fluids 10, 1834–1845.

EVANS, E. & HOCHMUTH, R. 1976 Membrane viscoelasticity. Biophys. J. 16, 1–11.
EVANS, E. A. & SKALAK, R. 1980 Mechanics and Thermodynamics of Biomembranes. CRC.
FEDOSOV, D. A., CASWELL, B. & KARNIADAKIS, G. E. 2010 A multiscale red blood cell model

with accurate mechanics, rheology, and dynamics. Biophys. J. 98, 2215–2225.
FEDOSOV, D. A., CASWELL, B., SURESH, S. & KARNIADAKIS, G. E. 2011 Quantifying

the biophysical characteristics of plasmodium–falciparum-parasitized red blood cells in
microcirculation. Proc. Natl Acad. Sci. USA 108, 35–39.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

33
2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

ni
ve

rs
ity

 o
f I

lli
no

is
 a

t C
hi

ca
go

 L
ib

ra
ry

, o
n 

05
 S

ep
 2

02
1 

at
 2

3:
56

:2
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2011.332
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


334 Z. Peng, R. J. Asaro and Q. Zhu

FISCHER, T. M. 1992 Is the surface area of the red cell membrane skeleton locally conserved.
Biophys. J. 61, 298–305.

FISCHER, T. M. 2004 Shape memory of human red blood cells. Biophys. J. 86, 3304–3313.
FISCHER, T. 2007 Tank-tread frequency of the red cell membrane: dependence on the viscosity of

the suspending medium. Biophys. J. 93, 2553–2561.
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