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A B S T R A C T   

We develop a general approach to study the equilibrium and form-finding of any general tensegrity systems with 
rigid bodies. The equilibrium equations are derived in an explicit form in terms of a nodal coordinate and 
orientation parameter as the minimal coordinate. The nodal vector consists of nodes (either free or pinned) in the 
pure bar-string tensegrity network and nodes on the rigid bodies (those connected to the pure bar-string ten-
segrity network). Based on the Lagrangian method, the nonlinear statics of the general tensegrity system in terms 
of the minimal coordinate is first given. Then, we linearize the statics equation and obtain its equivalent form, in 
terms of the force vector of the compressive and tensile members, to analyze structure equilibrium configurations 
and prestress modes. To study the system’s stability and have a comprehensive insight into the materials and 
structure members, we present the tangent stiffness matrix as a combination of the structure’s prestress, material, 
and geometric information. It is also shown that without rigid bodies, the governing equations of the general 
tensegrity system yield to the classical tensegrity structure (pure string-bar network). Form-finding of general 
tensegrity is implemented based on solving the nonlinear equilibrium equation, where the modification of 
tangent stiffness matrix and line search algorithm is used. Numerical examples demonstrate the capability of our 
developed method in finding the feasible prestress modes, conducting form-finding and prestress designs, and 
checking the structural robustness of any tensegrity systems with rigid bodies.   

1. Introduction 

Tensegrity is a conjunction of two words (tension and integrity) 
which was first proposed by Buckminster Fuller [1] for the art form by 
Ioganson (1921) and Snelon (1948) [2]. In their work, they never 
assumed there were no rigid bodies in the tensegrity structures. And in 
fact, the tensegrity sculpture built by Snelson in 1948 is two X-shape 
rigid bodies stabilized by several cables. However, it is probably because 
bars and strings are more efficient in taking compression, provide more 
accurate models (uncertainty is only along with the axially loaded 
members), and it is complicated to model the irregular shape of the rigid 
bodies, most of the literature focus on pure stable bar-strings networks. 

Indeed, after decades of study, the pure bar-string tensegrity struc-
tures have shown their many advantages in lightweight structure to-
pology design [3–6], engineering structures [5,7,8], soft robotics [9,10], 

deployable structures [11–13], energy absorption [14–16], meta-
materials [17–19], etc. But for many engineering structures, we must 
include the rigid bodies, i.e., the deck of the bridges, the roof of the 
shelters, the shell of cable domes, the D-section of the airfoils, and the 
shield of space structures. To deal with these rigid bodies in their ten-
segrity structure design, many researchers have proposed their 
compromised solutions to the rigid body tensegrities. For example, 
Carpentieri et al. [20] separated the minimal mass design of the ten-
segrity bridge structure and its deck. Laccone et al. [21] analyzed the 
cable-tensioned dome and its glass shell by the nonlinear finite element 
analysis software Straus7. Levin et al. [22] studied the rigid body spine 
mechanics based on the tensegrity-truss model. Chen and Jiang [23] 
used parallel mechanism theory to compute the stiffness of a fish made 
of rigid ribs stabilized by strings. Chen et al. [24] decoupled the force 
analysis of a tensegrity space habitat and its shield. However, none of 
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these approaches started from the fundamental governing equations of 
the whole system and developed a general approach to the analysis of 
tensegrity systems with rigid bodies. It is also worth mentioning that few 
software packages have the compatibility of simulating tensegrity sys-
tems with rigid bodies. For example, Wang et al. [25] modeled ten-
segrity swimmer and rigid bodies in the MuJoCo simulator and studied 
the data-based control methods. Sun et al. [26] studied a tensegrity foot 
with a rigid board and universal joint in ADAMS. Pajunen et al. [16] 
implemented ABAQUS to analyze the 3D-printable tensegrity lander 
with rigid joints. However, these commercial packages are costly, 
require much experience, and the insight of the algorithm is not clear. 

In the past years, a few attempts have been made to study tensegrity 
with rigid body models analytically. For example, for the static analysis, 
Hangai and Wu [27] proposed kinematics and equilibrium equations to 
study the behaviors of a hybrid structure that consists of cables and rigid 
structures. Wang et al. [28] derived the statics equilibrium equation of 
general tensegrity and used the mixed-integer linear programming 
method for the topology design. Chen and Jiang [29] derived the total 
stiffness of a general tensegrity structure in an explicit form and devel-
oped a set of sufficient and necessary conditions to guarantee the sta-
bility of the tensegrity structures. For the dynamics analysis, Nagase and 
Skelton [30] used non-minimal coordinates to write the dynamics 
equations of tensegrity by assuming the compression members are rigid 
bodies. Kan et al. [31,32] studied the nonlinear dynamics of clustered 
tensegrity with rigid bodies by using the configuration of the attached 
rigid bodies as the generalized coordinate. Li et al. [33] studied the 
kinodynamic planning of cable-driven tensegrity manipulators 
composed of clustered cables and rigid bodies. However, the equilib-
rium theory in most of the work is in a complicated form and limited to 
structures with small deformations. 

Moreover, there is increasing interest in using tensegrity structures 
to build robotics due to the many advantages of tensegrity structure, i.e., 
mass saving, control energy efficiency, abundant equilibrium states, etc. 
In many tensegrity robot applications, rigid bodies cannot be avoided. 
The current equilibrium theories and form-finding methods of the ten-
segrity system with rigid bodies are still limited. It is critical to have an 
efficient form-finding approach to find the configurations of the whole 
system to enlarge the applications of tensegrity systems. To this end, we 
derived a general approach to the nonlinear equilibrium equations and 
proposed a corresponding form-finding method to the tensegrity system 
with rigid bodies. In this study, the tensegrity with pure axial form 

elements is referred to as the traditional tensegrity, while the tensegrity 
with rigid bodies is called the general tensegrity. 

The paper is structured as follows. Section 2 presents the tensegrity 
and rigid body notations. Section 3 derives the kinematics of the system. 
Section 4 gives the nonlinear and linearized statics equations. Section 5 
shows the form-finding approach to the tensegrity systems with rigid 
bodies. Section 6 summarizes the conclusions. 

2. Notations of tensegrity systems with rigid bodies 

2.1. Nodal coordinates of the system and its components 

The tensegrity system with rigid bodies is composed of bars, strings, 
and rigid bodies, as shown in Fig. 1. The rigid bodies in the tensegrity 
structures are connected by the strings and bars nodes on the rigid 
bodies. We name the nodes on the rigid body as rigid body nodes. The 
nodes only on the bars and strings are free tensegrity nodes, and the 
other nodes in the fixed point are the pinned tensegrity nodes. The po-
sition of all the nodes can be expressed in any frame, and we choose to 
label them in the Cartesian coordinates in an inertially fixed frame by a 
nodal vector. Assume there are nn number of nodes, the X, Y, and 
Z-coordinates of the i th node ni ∈ R3 in the vector form is ni =

[ xi yi zi ]
T
. By stacking ni for i = 1, 2,⋯, nn together, we can get the 

nodal vector n ∈ R3nn for the whole structure: 

n =
[

nT
1 nT

2 ⋯ nT
nn

]T
, (1) 

and its equivalent matrix form [34] N ∈ R3×nn is: 

N = [ n1 n2 ⋯ nnn ]. (2) 

Note that one can simply obtain the nodal coordinate vector n by 
vectorizing the nodal coordinate matrix N: 

n = vec(N) = N( : ), (3) 

where vec(N) is an operator that stacks all the columns of matrix N 
into one vector. Usually, the positions of some of the nodes in the 
structure are fixed/pinned in specific directions. Let there be na degree 
of freedom of free tensegrity nodes, nb degree of freedom of pinned 
tensegrity nodes, and m rigid bodies with a total number of nq degree of 
freedom of the rigid nodes. Suppose there are zi number of nodes in the i 
th rigid body. To deal with the constraints, we distinguish the free 
tensegrity nodes, pinned tensegrity nodes, and the jth node in the ith 
rigid body by introducing three kinds of vectors a ∈ Rna , b ∈ Rnb , and 
qij ∈ Rnq : 

a = [ a1 a2 ⋯ ana ]
T
, (4)  

b = [ b1 b2 ⋯ bnb ]
T
, (5)  

qij =
[

qijx qijy qijz
]T
, (i = 1, 2,⋯,m; j = 1, 2,⋯, zi), (6) 

where the values of aα(α = 1,2,⋯,na), bβ(β = 1,2,⋯, nb) and qijx, qijy, 
qijz(i = 1,2,⋯,m; j = 1, 2,⋯, zi) are the indices of the entries corre-
sponding to the free tensegrity nodes, pinned tensegrity nodes, and the 
X, Y, Z freedom of the jth node in the ith rigid body in the nodal vector n. 
We use vectors na, nb, and nqij to label the nodal coordinate of the free 
node, pinned node, and the jth node in the ith rigid body. And 
Ena ∈ R3nn×na , Enb ∈ R3nn×nb , and Enqij ∈ R3nn×3 are the location matrices 
to extract vectors na, nb, and nqij from the vector n: 

Ena( :, k) = I3nn ( :, ak),Enb( :, k) = I3nn ( :, bk),Enqij = I3nn

(

:,
[

qijx qijy qijz
] )

, (7) 

where I3nn is the identity matrix in 3nn order. Thus, we have the 
following: 

Fig. 1. Diagram of tensegrity with rigid bodies, bar(b) and string(s) vectors are 
marked in black and red. 
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na = ET
nan, nb = ET

nbn,nqij = ET
nqij

n. (8) 

The nodal coordinate of the whole structure is obtained by summing 
all the free tensegrity nodes, pinned tensegrity nodes, and rigid body 
nodes: 

n = Enana +Enbnb +
∑m

j=1

∑zi

k=1
Enqij nqij . (9) 

The i th (i = 1,2,⋯,m) rigid body nodal coordinate vector is obtained 
by stacking the nodal coordinate of the zi rigid-body nodes: 

nqi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

nqi1

nqi2

⋮
nqizi

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (10) 

The location matrix corresponding to the i th (i = 1, 2,⋯,m) rigid 
body nodes is: 

Enqi =
[

Enqi1 Enqi2 ⋯ Enqizi

]
. (11) 

Then, the nodal coordinate vector of the i th (i = 1,2,⋯,m) rigid body 
can be calculated by: 

nqi = ET
nqi

n. (12)  

2.1.1. Connectivity matrix 
A connectivity matrix provides the connection pattern of all the 

nodes in the structure. Let C ∈ Rne×nn be the connectivity matrix of the 
tensegrity systems with rigid bodies, where ne is the total number of 
axially loaded members (bars and strings). The i th (i = 1,2,⋯, ne) row 
of C, denoted as Ci = [C](i,:) ∈ R1×nn , represents connectivity informa-
tion of the i th element in the structure. Suppose the i th member is from 
the j th node to the k th node. The r th (i = 1, 2,⋯, nn) entry the i th row 
of C satisfies: 

[C]ir =

⎧
⎪⎨

⎪⎩

− 1, r = j
1, r = k
0, r = else

. (13)  

2.1.2. The geometry of axial elements 
An axial element vector denotes the start and end nodes of an axial 

element (bar or string). For example, the i th axial element vector hi ∈

R3×1 is: 

hi = nk − nj = Ci⨂I3n, (14) 

where the symbol ⨂ represents the Kronecker product. Stacking all 
the axial elements into a structure element matrix H ∈ R3×ne , we get: 

H = NCT . (15) 

The present length of the i th axial element is: 

li = ‖hi‖ =
(
nT ( CT

i Ci
)
⊗ I3n

)1
2. (16) 

Rest length is the length of an axial element with no tension or 
compression. We use the subscript 0 to denote the rest length of an axial 
element, i.e., the rest length of the i th axial element is l0i. The length and 
rest length vector of all the axial elements are: 

l0 = [ l01 l02 ⋯ l0ne ]
T
, (17)  

l = [ l1 l2 ⋯ lne ]
T
. (18)  

2.1.3. Stiffness of axial elements 
Let the cross-sectional area, secant modulus, and tangent modulus of 

the i th element be Ai, Ei, and Eti, respectively. Then, the cross-sectional 
area, secant modulus, and tangent modulus vector of the structure A,E,

Et ∈ Rne can be written as: 

A = [A1 A2 ⋯ Ane ]
T
, (19)  

E = [E1 E2 ⋯ Ene ]
T
, (20)  

Et = [Et1 Et2 ⋯ Etne ]
T
. (21) 

The internal force of the i th element is ti = Aiσi = EiAi(li − l0i)/l0i, the 
internal force vector of the structure t ∈ Rne can be written as: 

t = [ t1 t2 ⋯ tne ]
T
= Ê Â l̂

− 1
0 (l − l0). (22) 

where Ê is an operator that converts vector E into a diagonal matrix. 

2.2. Notations of the rigid bodies 

2.2.1. Orientation matrix of rigid bodies 
Unlike the bars and strings in the rigid body tensegrity, one can use 

the nodal vector to describe the exact attitude of these axial elements. To 
describe the attitude of a rigid body, an orientation matrix must be 
included to show the transition process. There are many approaches to 
achieve this goal, i.e., Euler angle, Euler principal axis, and quaternion. 
We chose the Euler angle approach because it is a minimal coordinate 
method to describe the attitude of rigid bodies. In this problem, we 
implemented a simple (1–2-3) orientation set, which means to rotate α,
β, and γ about the principal axis of b1, b2, b3 in sequence in the body- 
fixed frame. The attitude parameter φ is the vector composed of the 
Euler angle: 

φ =

⎡

⎢
⎣

α
β
γ

⎤

⎥
⎦. (23) 

The attitude matrix is [35]: 

R(α,β,γ)=R3(γ)R2(β)R1(α)

=

⎡

⎢
⎣

cosγcosβ cosγsinβsinα+sinγcosα − cosγsinβcosα+sinγsinα
− sinγcosβ − sinγsinβsinα+cosγcosα sinγsinβcosα+cosγsinα

sinβ − cosβsinα cosβcosα

⎤

⎥
⎦.

(24) 

Even though the Euler angle has kinematic singularities for the value 
of β= 0, this is only a problem in calculating the velocity of orientation 
parameters from angular velocities. For solving the static equilibrium 
and form-finding of general tensegrities, there is no such problem using 
the Euler angle as the orientation parameter. 

2.2.2. Mass center of rigid body 
Let the mass center of the i th rigid body be nci ∈ R3×1. Normally, the 

position of the mass center can be given by measuring the mass distri-
bution of the rigid body in an experiment. However, in the static anal-
ysis, the equilibrium of total force and moment is independent of the 
choice of the mass center. For simplicity, we can directly use the ge-
ometry center of the i th rigid body nodes as the mass center: 

nci =
1
zi

I1,zi ⨂I3nqi , (25) 

where I1,zi ∈ R1×zi is an all-ones vector with zi columns, and zi is the 
number of rigid body nodes in the ith rigid body. Substitute Eq.(12) into 
Eq. (25), and one can compute the mass center from the nodal coordi-
nate vector of the structure: 

nci = ET
nci

n, (26) 

where Enci 
is: 
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Enci
=

1
zi

Enqi
Izi ,1⨂I3. (27)  

2.2.3. Nodal coordinate of rigid bodies 
If there is translation or rotation of the rigid bodies, the nodal co-

ordinate of the j th node on the i th rigid body nqij is: 

nqij = nci + rij, (28)  

rij = RT
i

(
nqij0 − nci0

)
=
(

ET
nci

− ET
nqij

)
n, (29) 

where rij is the vector from the center of mass nci to the j th node in 
the i th rigid body, nqij0 and nci0 is the nodal coordinate vector of the j th 
node and the mass center of the i th rigid body in the body-fixed frame. 
Ri is the attitude matrix of the i th rigid body. 

2.3. Minimal coordinate of the system 

The minimal coordinate U ∈ RnU is used to represent the position of 
the free tensegrity nodes and the rigid bodies: 

U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

na
U1
U2
⋮

Um

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where Ui is the minimal coordinate for the i th rigid body, including 
the position of the mass center nci ∈ R3 and attitude parameter φi ∈ R3: 

Ui =

[
nci

φi

]

. (31) 

The location matrix is used to locate minimal coordinate of free 
tensegrity nodes and rigid bodies: 

U =
[

EUa
[

EUc1 EUφ1

] [
EUc2 EUφ2

]
⋯
[

EUcm EUφm

] ]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

na
⎡

⎣
nc1

φ1

⎤

⎦

⎡

⎣
nc2

φ2

⎤

⎦

⋮
⎡

⎣
ncm

φm

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(32) 

The nodal coordinate vector of free nodes, mass center, Euler angle, 
and minimal coordinate of the i th rigid body is: 

na = ET
Ua

U, nci = ET
Uci

U,φi = ET
Uφi

U,Ui = ET
Ui

U. (33) 

EUc and EUφ is used to extract the mass center and Euler angle in-
formation of all rigid bodies: 

EUc = [EUc1 EUc2 ⋯ EUcm ],EUφ = [EUφ1 EUφ2 ⋯ EUφm ]. (34) 

EUi is used to extract the minimal coordinate of the i th rigid body: 

EUi =
[

EUci EUφi

]
. (35)  

3. Kinematics of the rigid body 

3.1. Attitude kinematics 

The angular velocity vector of the i th rigid body in the inertial frame 

is [36]: 

ωi =

⎡

⎢
⎣

ω1
ω2
ω3

⎤

⎥
⎦ = [Bi]φ̇i. (36) 

The Bi matrix for the Euler angle (1–2-3) orientation set is: 

Bi =

⎡

⎢
⎣

1 0 sinβ
0 cosα − cosβsinα
0 sinα cosαcosβ

⎤

⎥
⎦. (37)  

3.2. Transformation matrix 

The velocity vector of the j th node on the i th rigid body is: 

ṅqij = ṅci +ωi × rij. (38) 

Substitute Eq.(36) into Eq. (38), and we will have: 

dnqij

dt
=

dnci

dt
− rij

×ωi =
dnci

dt
− rij

×Bi
dφi

dt
. (39) 

where rij
× is the anti-symmetric matrix of the vector rij. Eliminate the 

time derivative part, and the above equation can be written as: 

dnqij = dnci − rij
×Bidφi. (40) 

So, the partial derivative of nqij to Ui is: 

Gij =
∂nqij

∂UT
i
= [ I3 − rij

×Bi ], (41) 

where ∂a
∂bT and ∂bT

∂a represent the partial derivative of vector a to vector 
b in numerator layout, respectively. The partial derivative of nqij to the 
minimal coordinate U is: 

Gij =
∂nqij

∂UT =
∂nqij

∂UT
i

∂Ui

∂UT = GijET
Ui
. (42) 

The transformation matrix G of the entire structure is: 

G =
∂n

∂UT =
∂
(

Ena na +
∑m

i=1
∑zi

j=1Enqij nqij

)

∂UT = Ena ET
Ua

+
∑m

i=1

∑zi

j=1
Enqij Gij,

(43) 

which maps the difference of nodal coordinate n to the difference of 
minimal coordinate U. 

4. Equilibrium equation 

4.1. The Lagrangian method 

The general form of the Lagrangian equation is: 

d
dt

∂L
∂U̇

−
∂L
∂U

= Qnp, (44) 

where L = T − V is the Lagrangian function, T and V are the kinetic 
energy and potential energy of the system, Qnp is the non-potential force 
vector of the general tensegrity structures, U is the minimal coordinate 
of the system. For the statics problem, the kinetic energy T is zero in this 
study, and we study the potential energy of the system. For statics 
problems, the Lagrangian method degenerates to: 

∂V
∂U

= Qnp. (45) 

Note that Eq.(45) is consistent with the principle of stationary total 
potential energy and the principle of virtual work. However, using the 
Lagrangian method to derive the equilibrium equation will make it easy 
to extend to the future study of the dynamic problem. It is required in the 
Lagrangian method to use minimal coordinate as the variable, which is 
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critical for the derivation. Note that if we use variables with over-
parameterization like the Euler parameter, modified Rodrigues param-
eters, etc., there will be an issue in violation of the constraints of the 
variables. 

4.2. Energy function 

The total potential energy V of the tensegrity system with the rigid 
body is composed of strain potential energy Ve and gravitational po-
tential energy Vg: 

V = Ve + Vg. (46)  

4.2.1. Strain potential energy 
There is no deformation in a rigid body, so the strain potential energy 

for a rigid body is zero. The strain potential energy is only stored in the 
axial members: 

Ve =
∑ne

i=1

∫ li

l0i

tidx. (47) 

From the statics equation of traditional tensegrity [37], we can 
compute the partial derivative of Ve to U, ∂Ve

∂n : 

∂Ve

∂U
=

∂nT

∂U
∂Ve

∂n
= GT ( CT l̂

− 1
t̂C
)
⊗ I3n. (48)  

4.2.2. Gravitational potential energy 
The gravitational potential energy is relative to any member that has 

mass. In tensegrity with a rigid body, all axial members, point mass, and 
rigid body will contribute to gravitational potential energy: 

Vg = Vge +Vgp +Vgr. (49) 

The gravitational potential energy corresponding to the axial ele-
ments Vge is: 

Vge =
∑ne

i=1

mei

2
[ ax ay az ]

⎡

⎢
⎢
⎢
⎣

xi
j + xi

k

yi
j + yi

k

zi
j + zi

k

⎤

⎥
⎥
⎥
⎦
=
∑ne

i=1

mei

2
[ ax ay az ]|Ci|⊗I3n

=
1
2
(
mT

e |C|
)
⊗ [ ax ay az ]n, (50) 

where mei is the mass of the ith axial element, and me is the mass 
vector of all axial elements.ax, ay, az are the gravitational acceleration in 
the X, Y, and Z-axis, respectively. The gravitational potential energy 
corresponding to point mass Vgp is: 

Vgp =
∑nn

i=1
mpi ⊗ [ ax ay az ]

⎡

⎢
⎣

xi
yi
zi

⎤

⎥
⎦ = mT

p ⊗ [ ax ay az ]n (51) 

where mpi is the mass of the ith node, and mp is the node mass vector. 
The gravitational potential energy corresponding to the rigid body Vgr is: 

Vgr =
∑nq

i=1
mqi ⊗ [ ax ay az ]nci

= mT
q ⊗ [ ax ay az ]

⎡

⎢
⎢
⎢
⎣

nc1

⋮

ncm

⎤

⎥
⎥
⎥
⎦

= mT
q ⊗ [ ax ay az ]ET

UcU

(52)  

where mqi is the mass of the ith rigid body, and mq is the mass vector 
rigid bodies. The partial derivative of Vg to n is: 

∂Vg

∂U
=

∂nT

∂U

(
∂Vge

∂n
+

∂Vgm

∂n

)

+
∂Vgr

∂U

=

{

GT
(

1
2
|C|T me + mp

)

+ EUcmq

}

⊗ [ ax ay az ]
T
= g,

(53)  

where g is the gravitational force vector. 

4.3. Nonlinear equilibrium equation 

The statics equation of tensegrity with the rigid body is calculated by 
the partial derivative of V with respect to U: 

∂V
∂U

=
∂Ve

∂U
+

∂Vg

∂U
= Qnp. (54) 

Substitute the Eq.(48) and Eq.(53) into Eq.(54), and we will have: 

GT ( CT l̂
− 1

t̂C
)
⊗ I3n = Qnp − g. (55) 

Eq.(55) is the static equilibrium equation of the general tensegrity 

system with rigid bodies. The second part 
(
CT l̂

− 1
t̂C
)
⊗ I3n is the 

collection of inner force of members in nodes, which is identical to Kn in 

traditional tensegrity structure [37]. Note that 
(
CT l̂

− 1
t̂C
)
⊗ I3 is a 

nonlinear function of nodal coordinate, so Eq. (55) is nonlinear. The first 
part GT transforms the nodal force from the node space to body space, 
which is identity to the generalized force. Eq.(55) can be written into a 
simple form: 

Krn = Qnp − g, (56) 

where Kr is the stiffness matrix of general tensegrity with nodal co-
ordinate vector n as the variable: 

Kr = GT ( CT l̂
− 1

t̂C
)
⊗ I3. (57) 

The right part of Eq. (54) is the generalized force Qnp, which can be 
calculated by using the transformation matrix [35]: 

Qnp =
∂nT

∂U
f +

∑ne

i=1

∂nT
ci

∂U
f ci +

∑ne

i=1

∂ωT
i

∂U̇
mci

= GTf +
∑ne

i=1
EUcif ci +

∑ne

i=1
EUφiBT

i mci = GTf + EUc f c + EUφ BT mc,

(58) 

where f is the non-potential external force vector exerted on the 
tensegrity node. f ci and mci is the total force and moment exerted on the i 
th rigid body. f c and mc are the collection of force and moment of all 
rigid bodies. 

f c =

⎡

⎢
⎣

f c1
⋮

f cm

⎤

⎥
⎦,mc =

⎡

⎢
⎣

mc1
⋮

mcm

⎤

⎥
⎦. (59) 

B matrix is defined as: 

B =

⎡

⎢
⎣

B1
⋱
Bm

⎤

⎥
⎦. (60)  

4.4. Linearized equilibrium equation 

4.4.1. Linearized equilibrium equation with minimal coordinate as the 
variable 

Using Taylor’s expansion of Eq. (56) about a configuration ni in the 
ith iteration step, we have the linearized equilibrium equation: 

Kr|ni ni + KTr
(
Ui+1 − Ui) = Qnp − g, (61)  

where KTr is the tangent stiffness matrix of the structure, Ui is the 
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minimal coordinate corresponding to ni. Kr|ni is the stiffness matrix in ni 

configuration. By solving Eq.(61), we can obtain a new configuration 
Ui+1 in the i + 1 iteration step, which is closer to the equilibrium 
configuration. The out-of-balance forces of the system are defined as: 

Pi = Qnp − g − Kr|ni ni. (62) 

The difference of the minimal coordinate can be simply computed 
by: 

dUi = K− 1
Tr Pi. (63) 

The above three equations can be used in solving nonlinear equi-
librium equations based on an iteration method. 

4.4.2. Linearized equilibrium equation in terms of the member force 
Eq.(55) can be written linearly in terms of the member force t: 

Art = Qnp − g, (64)  

where Ar ∈ RnU×ne is the equilibrium matrix for tensegrity with rigid 
bodies: 

Ar = GTA2. (65)  

where A2 is the equilibrium equation of traditional tensegrity [37]: 

A2 = CT ⊗ I3b.d.(H)̂l
− 1
, (66)  

where b.d.(H) is the block diagonal matrix of H. Note that the equilib-
rium matrix for tensegrity with rigid bodies Ar is identical to the C 
matrix in Wang et al. [28]. The singular value decomposition of the 
equilibrium matrix Ar reveals the self-stress mode and mechanism mode 
of the structure [38]: 

Ar = WΣVT = [W1 W2 ]

[
Σ0 0
0 0

][
VT

1

VT
2

]

, (67)  

where W ∈ RnU×nU , andV ∈ Rne×ne are orthogonal matrices. Let r =
rank(Ar) be the rank of Ar. V1 ∈ Rne×r,V2 ∈ Rne×(ne − r) is respectively the 
row space and null space of Ar, and W1 ∈ RnU×r,W2 ∈ RnU×(nU − r) is 
respectively the column space and left null space of Ar. ArV2 = 0 and 
AT

r W2 = 0, V2 and W2 are the self-stress mode and mechanism mode of 
the tensegrity structure, respectively. 

4.4.3. Compatibility equation 
The compatibility equation is the relation between dU and dl that 

guarantees the structural deformations are physically valid. The 
compatibility equation of the structure is: 

BrdU = dl, (68) 

where Br ∈ Rne×nU is the compatibility matrix: 

Br =
∂l

∂UT =
∂l

∂nT

∂n
∂UT = AT

2 G. (69) 

It can be found that the compatibility matrix is the transpose of the 
equilibrium matrix: 

Br = AT
r . (70) 

This can also be proved by the principle of virtual work. 

4.5. Tangent stiffness matrix 

Refer to the derivation of tangent stiffness in Chen and Jiang [29], 
the tangent stiffness matrix of the general tensegrity with a rigid body is: 

KTr =
∂
(
BT

r t
)

∂UT = BT
r

∂t
∂UT +

∂BT
r

∂UT t = KE + KG. (71) 

The first part of Eq.(71) is the material stiffness KE caused by the 
difference of member force: 

KE = BT
r

∂t
∂lT

∂l
∂UT = BT

r k̂Br = Ar k̂AT
r , (72) 

where k = Ê Âl− 1
0 is the stiffness of the axial members. The second 

part of Eq.(71) is the geometry stiffness KG caused by the difference of 
structural shape: 

KG =
∂BT

r

∂UT t = ΩT t =
∑ns

i=1
ΩT

i ti, (73) 

where the Hessian matrix Ω ∈ ℝne×nU×nU is expressed as: 

Ω =
∂Br

∂U
=
[

ΩT
1 ⋯ ΩT

i ⋯ ΩT
ne

]T
, (74) 

where Ωi =
∂Bri
∂U ∈ RnU×nU is the i th member’s Hessian matrix, and Bri 

is the ith row of Br. Note that the explicit formulation of Ω is vital to 
calculate the geometry stiffness matrix. Fortunately, Ωi can be obtained 
by calculating and comparing two equivalent expressions of the ith ca-
ble’s acceleration l̈i. Eq. (78) is equivalent to: 

l̇i = BriU̇. (75) 

Using ∂Bri
∂t = ∂UT

∂t
∂Bri
∂U = U̇TΩi, the i th cable’s acceleration l̈i is: 

l̈i = BriÜ +
∂Bri

∂t
Ü = BriÜ + U̇T ΩiU̇. (76) 

From the derivation in Appendix, the ith cable’s acceleration l̈i is 
expressed as: 

l̈i = BriÜ + U̇T
(

GT ( CT
i ⊗ I3

)Phni

li
(Ci ⊗ I3)G + Fi

)

U̇. (77) 

Comparing Eq. (76) with Eq. (77), the matrix Ωi is written as: 

Ωi = GT ( CT
i ⊗ I3

)Phni

li
(Ci ⊗ I3)G + Fi, (78) 

where Phni = I3 − hni h
T
ni
∈ R3×3 denotes the projector to the plane 

with the normal vector hni , in which hni =
hi
li 

is the ith cable’s unit vector. 
From the derivation in Appendix, the matrix Fi ∈ RnU×nU is written as: 

Fi =
∑m

j=1

∑zi

k=1
EUj

[
0 0
0 BT

j z×ijkr×jkBj

]

ET
Uj, (79) 

in which zijk ∈ R3 is: 

zijk =
(

hT
ni
(Ci ⊗ I3)Enqjk

)T
. (80) 

Note that the tangent stiffness is a general form of classical ten-
segrity. If there is no rigid body, the tangent stiffness will degenerate to a 
classical tensegrity [37]. Also, note that the above derivation is gener-
ally consistent with the formulation in Chen and Jiang [29]. The dif-
ference is that the proposed formulation in this paper can consider free 
and pinned tensegrity nodes in the general tensegrity system, and the 
use of the location matrix makes the formulation in Eq.(79) be expressed 
in a more neat and straightforward form. 

5. Form-finding of tensegrity systems with rigid bodies 

In this section, we formulate the form-finding method for tensegrity 
systems with rigid bodies. Three numerical examples are carried out to 
illustrate the accuracy and efficiency of the proposed form-finding 
method. 
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5.1. Form-finding method 

5.1.1. Form-finding procedure 
The form-finding method is basically solving the nonlinear equilib-

rium equation. However, the self-equilibrated tensegrities lacking 
proper constraints have several problems in solving its equilibrium 
equation [39]. Firstly, the rigid body mode will lead to a singular 
tangent stiffness matrix. Newton’s method is not able to solve the 
equation with a singular Hessian matrix. Secondly, the tangent stiffness 
matrix may have a negative eigenvalue, and the result of solving the 
nonlinear equilibrium equation will converge to an unstable equilibrium 
configuration. To ensure the result is stable equilibrium, modifying the 
tangent stiffness matrix to positive definite is necessary. Thirdly, an 
appropriate optimization objective must be defined to guarantee that 
the result approaches the equilibrium configuration. The form-finding 
procedure consists of the following main steps, as shown in Fig. 2. 

Inputs: 
(1) Specify the primary data of a tensegrity system with rigid bodies, 

including the minimal coordinate U0, connectivity matrix C, axial 
stiffnesses vector E, cross-section area vector A, rest length vector l0, 
location matrix Ena ,Enb ,Enqij ,EUa ,EUi ,EUφ , coefficient u and ε. Compute 

Fig. 2. Flow chart of the form-finding algorithm.  

Fig. 3. The initial configuration of a T-bar.  

Fig. 4. The member forces in each substep.  

Fig. 5. The initial configuration.  

Fig. 6. The equilibrium configuration.  
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the nodal coordinate n0, stiffness matrix Kr|n0, out-of-balance force P0 in 
the initial configuration. 

Iteration: 
(2) Compute the tangent stiffness KTr for the structure in the current 

configuration. Compute the minimal eigenvalue of the KTr as λ. 

(3) Check whether the tangent stiffness matrix is positive definite or 
not. Use the method in Section 5.1.2 to modify the stiffness matrix such 
that it is positive definite. 

(4) Solve the difference of minimal coordinate dUi, employ the line 
search algorithm in Section 5.1.3 to calculate the updated minimal co-
ordinate Ui. 

(5) Calculate the nodal coordinate ni, stiffness matrix Krni and out-of- 
balance forces Pi. Check whether the current configuration is in equi-
librium or not. If not, set i←i+1 and go to step (2). 

(6) Terminate the iteration when an equilibrium configuration has 
been obtained. 

5.1.2. Modification of tangent stiffness matrix 
To guarantee the form-finding result converges to a stable equilib-

rium. The positive definiteness of the tangent stiffness matrix KTr should 
be examined and modified. For the configuration Ui at an iteration step, 
if the minimal eigenvalue of the tangent stiffness matrix λ is negative, a 
sufficiently large identity matrix (|λ| +u )I will be added to KTr to obtain 
the modified tangent stiffness matrix K̃Tr, where u is a positive coeffi-
cient to guarantee the modified tangent stiffness matrix is not seriously 
ill. Otherwise, uI will be added to the tangent stiffness matrix: 

K̃Tr =

{
KTr + (u + ‖λ‖)I, λ < 0

KTr + uI, λ > 0 . (81) 

Fig. 7. The five mechanism modes of the structure.  

Fig. 8. Eigenvalue of the tangent stiffness matrix.  

Fig. 9. Deformed shapes of the modes corresponding to the first four eigenvalues.  
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From experience, in this paper, we set u = 0.1. Using the modified 
tangent stiffness matrix, the increment of the generalized coordinate 
vector dU can be obtained from Eq. (63): 

dUi = K̃
− 1
Tr Pi. (82)  

5.1.3. Line search algorithm 
To increase the convergence speed of solving the nonlinear equilib-

rium equation. We use a line search algorithm [39,40] in each iteration 
step to minimize the total potential energy of the system. In the ith step, 
we update the minimal coordinate vector Ui from that in step i − 1 by: 

Ui = Ui− 1 + xdUi, (83)  

where the coefficient x is determined by the following optimization 
problem of single-variable function on the fixed interval: 

minV(x)
s.t.0 < x ≤ 1. (84) 

Given Ui, the nodal coordinate vector ni can be calculated by Eqs.(9), 
(24), and (28). And the total potential energy can be calculated by Eqs. 
(46) to (2). The line search algorithm can be simply implemented by the 
‘fminbnd’ function in MATLAB. 

5.2. Numerical examples 

In this section, four examples are studied to demonstrate the accu-
racy and efficiency of the proposed form-finding method for tensegrity 
with rigid bodies. Different examples are chosen to represent general-
ized tensegrity with none, one, or multiple rigid bodies, with or without 
free and pinned nodes. In these examples, the equilibrium configura-
tions and prestress are tuned by varying the rest length of the strings in 
the structure. The tangent modulus and cross-sectional area of the 
strings in all the examples are set to be 7.6 × 1010Pa and 1× 10− 4m2. 

5.2.1. T-bar unit 
In this example, we would like to show that the system degrades to a 

traditional tensegrity structure without arbitrary rigid bodies. A T-Bar 
unit consisting of four bars and four strings has been proven to be a mass 
efficient structure in taking compressive loads [34]. Tran and Lee have 
shown the T-Bar example regarding the form-finding research [41]. 
Using the same configuration described in [41], as shown in Fig. 3, we 
assign non-equilibrium to prestress in the structure and check the 
deformed configuration. The rest length of bars and the two bottom 
strings are set to be l and 0.8l, the rest length of the two top strings is 
decreased from 0.8l to 0.5l equally in each substep, where l is the present 
length of members in the initial configuration. The equilibrium config-
uration and member force are obtained by the form-finding method, and 
the results are shown in Fig. 4. 

5.2.2. Patio shade cover 
This example presents a structure composed of a rigid triangle piece, 

five strings, a free node, and four pinned nodes. The index of nodes and 
elements are marked in black numbers and blue numbers in circles, 
respectively, as shown in Fig. 5. And Fig. 5 is the initial configuration of 
the generalized tensegrity. To generate the prestress of the structure, the 
rest length of strings is set to be 0.3 times the present length in the initial 
configuration, which is l0 = 0.3l. Fig. 6 gives the equilibrium configu-
ration of the form-finding result. 

The nodal coordinate matrix N ∈ R3×8 in the equilibrium configu-
ration in the form of Eq. (3) is given as: 

Fig. 10. The initial configuration of the tensegrity table.  

Fig. 11. The equilibrium configuration of the tensegrity table.  

Fig. 12. Eigenvalues of the tangent stiffness matrix.  
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Fig. 13. The mode shapes and the eigenvalues of the tangent stiffness matrix.  

Fig. 14. A tetrahedron build with rigid bodies.  

Fig. 15. Rotation of the rigid bodies.  

Fig. 16. Initial configuration of a tetrahedron tensegrity with rigid bodies.  

Fig. 17. Form-finding solution of tetrahedron generalized tensegrity.  

N =

⎡

⎢
⎣

0.8955 − 0.8365 0.0310 2.0000 − 2.0000 0.0094 1.0000 − 1.0000 0.0300
0.3221 0.3204 − 1.1787 1.0000 1.0000 − 2.3218 − 3.0000 − 3.0000 − 0.1787

0 0 0 0 0 0 0 0 0

⎤

⎥
⎦. (85)   
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Fig. 18. Form-finding solution of hexahedron generalized tensegrities.  

Fig. 19. Form-finding solution of octahedral generalized tensegrities.  

Fig. 20. Form-finding solution of dodecahedral generalized tensegrities.  

Fig. 21. Form-finding solution of icosahedral generalized tensegrities.  

Fig. 22. Comparison of member forces.  

Fig. 23. Comparison of the minimal eigenvalue of the tangent stiffness matrix.  
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From Eq. (13), the connectivity matrix C ∈ R5×8 in initial configu-
ration is: 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1 0 0 1 0 0 0 0 0
0 − 1 0 0 1 0 0 0 0
0 0 − 1 0 0 1 0 0 0
0 0 0 0 0 − 1 1 0 0
0 0 0 0 0 − 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (86) 

From Eq.(15), one can get the structure element matrix H ∈ R3×5: 

H =

⎡

⎢
⎣

1.1045 − 1.1635 − 0.0216 0.9906 − 1.0094
0.6779 0.6796 − 1.1430 − 0.6782 − 0.6782

0 0 0 0 0

⎤

⎥
⎦. (87) 

From Eq. (65), the equilibrium matrix for tensegrity with rigid bodies 
Ar ∈ R9×5 can be calculated: 

Ar =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 − 0.0189 − 0.8251 0.8300
0 0 − 0.9998 0.5649 0.5577
0 0 0 0 1

− 0.8523 0.8635 0.0189 0 0
− 0.5231 − 0.5044 0.9998 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

− 0.0259 0.0060 0.0199 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (88) 

Singular value decomposition of equilibrium matrix reveals the rank 
of Ar is r = 4. That is to say, the structure has s = 5 − r = 1 self-stress 
mode and m = 9 − r = 5 mechanism modes. The null space of the equi-
librium matrix Ar gives the self-stress mode V2 of the system: 

V2 = [ − 0.4678 − 0.4514 − 0.4725 − 0.4166 − 0.4250 ]T . (89) 

The left null space of the equilibrium matrix Ar gives the mechanism 
modes W2 of the system: 

Fig. 24. The initial configuration of the tensegrity spine.  

Fig. 25. C-shape, achieved by changing the rest length of the strings on one 
side linearly. 
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W2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0
0 0 0 0 0

− 0.6024 0 0 0 − 0.7982
0.0147 0 0 0 − 0.0111
0.0156 0 0 0 − 0.0118

0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 1.0000 0

− 0.7970 0 0 0 0.6021

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (90) 

Each column of W2 represent a mechanism mode. The five mecha-
nism mode shapes are plotted in Fig. 7, where the dashed line and solid 
lines are the equilibrium configuration and the deformed shape of the 
mechanism, respectively. The 1st, 3rd, and 4th mechanism modes 
correspond to the rotation motion of the rigid body about the X, Y, 
Z-axis. The 2nd mechanism mode contains the translation motion of the 

rigid body in the Z-axis, and the 5th mode contains the translation of free 
node in the Z-axis, translation of mass center in X, Y-axis, and rotation of 
rigid body by Z-axis. 

The mechanism mode is the null space of the material stiffness matrix 
which means there is no elongation of the axial member in the mecha-
nism mode. For tensegrity systems, the mechanism mode can be stiff-
ened by prestress. The system’s stability can be checked by the product 
force [42,43] or by the positive-definite of tangent stiffness matrix 
[28,44]. The eigenvalue of the tangent stiffness matrix KTR is plotted in 
Fig. 8, we can see that all the eigenvalues of the tangent stiffness matrix 
are positive, which means the mechanism mode is stiffened by prestress. 

The deformed shape corresponding to the first four eigenvalues of 
the tangent stiffness matrix is plotted in Fig. 9. The dotted line is the 
equilibrium configuration, and the solid line is the deformed shape. As 
we can see, the 1st and 4th mode shapes contain out-of-plane defor-
mation, while the 2nd and 3rd mode shapes contain pure planer 
deformation. 

5.2.3. Tensegrity table 
This example presents a self-equilibrated tensegrity table composed 

of two rigid bodies and four strings. Fig. 10 is the initial configuration. 
The rest length of the strings is set to be 0.3 times of present length, 
which is l0 = 0.3l, to generate prestress of the structure. Fig. 11 shows 
the equilibrium configuration of the form-finding result. 

The prestress mode of the equilibrium matrix is: 

V2 = [ 0.2887 0.2887 0.2887 0.8660 ]T . (91) 

The first three values reveal that the forces of the three long strings 
are the same. And the fourth value indicates that the short string’s inner 
force is three times that of the long string at an equilibrium state. 

Fig. 12 is the eigenvalue of the tangent stiffness matrix. The first six 
eigenvalues correspond to the rigid body modes of the structure. Fig. 13 
shows the mode shapes of the tensegrity table, where mode 6 is a pure 
rotational mode with zero stiffness. The 7th mode is the most flexible 
one, which involves the relative rotation of two rigid bodies about the Z- 
axis. 

5.2.4. Spherical tensegrity 
This example presents a spherical tensegrity composed of multiple 

rigid bodies in which all nodes lie on the vertices of a regular poly-
hedron. Truncated tensegrity is the simplest way to build spherical 
tensegrities, and there are a few studies about this topic [39,45,46,47]. 
In this example, we propose a novel method to build spherical tensegrity 
with rigid bodies and study the equilibrium condition of the structure. 
Here we use the tetrahedron as an example to illustrate the step-by-step 
procedure to generate a spherical tensegrity with a rigid body, the 
equilibrium configuration, and the member force of all the other regular 
polyhedrons tensegrity with rigid bodies. 

In Fig. 14, four rigid bodies are initially placed in the plane of the 
tetrahedron, and rigid body nodes are placed in the tetrahedron’s 
vertices. Each rigid body is rotated by an angle φ about the normal line 
of the plane to generate a new shape with 12 nodes, as shown in Fig. 15. 

If we connect the nodes of the rigid bodies in the initial configura-
tion, there will be 12 truncating-edge strings and 6 vertical strings, as in 
Fig. 16. To prestress the spherical tensegrity, the rest length of the 
vertical strings is set to [0.1,0.8] times its present length while 
truncating-edge strings are identical to its present length. The form- 
finding result of a truncated tetrahedral generalized tensegrity is 
shown in Fig. 17. The force density of truncating-edge strings and ver-
tical strings are respectively qt and qv. We can observe that the force 
density of both truncating-edge strings and vertical strings increases as 
the rest length of vertical strings decreases. 

The form-finding result for other regular polyhedron shapes, 
including hexahedron, octahedral, dodecahedral, and icosahedral 
generalized tensegrities, are shown in Figs. 18-21. 

Fig. 26. S-shape, achieved by changing the rest length of the strings on two 
sides sinusoidally but with different phases. 
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In our example, to make a fair comparison between the TTS (tradi-
tional tensegrity structure) and RTS (rigid-body tensegrity structure). 
We first set the initial nodal coordinate of the TTS and RTS to be iden-
tical. To take the consideration of rigid bodies, we assign the axial 
stiffness of bars to be 1000 times the strings. The rest length of the 
vertical strings is set to be [0.1,0.8] times its present length, while 
truncating-edge strings and bars are identical to their present length in 
the initial configuration. In the form-finding process, we shorten the rest 
length of the vertical strings in the TTS and RTS to have an equal length 
at each substep. The member forces in the equilibrium configuration at 
each substep are shown in Fig. 22. We can see that the member force of 
vertical strings in RTS increases a lot more than that of TTS. It is because 
the TTS has more freedom to deform and release the increasing strain 
energy. Moreover, the stiffness in the TTS and RBD are also different. As 
shown in Fig. 23, the minimal eigenvalue of RTS is more than two times 
the TTS structure at each substep. 

5.2.5. Tensegrity spine 
As the last example, we study a tensegrity spine [48,49] composed of 

multiple rigid bodies. Fig. 24 is the initial configuration of the tensegrity 
spine. The tensegrity spine comprises 10 rigid body units, and the 10 
rigid bodies are connected by four groups of vertical side strings and 
nine groups of diagonal strings. 

The rest length of all the diagonal strings is set to 0.9 times the 
present length. The rest length of the three groups of vertical side strings 
is set to 0.9 times the present length, while the rest length of the other 
group of vertical side strings is set to 0.6 times the present length. The 
equilibrium configuration calculated by the form-finding method is 
shown in Fig. 25. 

The rest length of two groups of vertical side strings in the opposite 
positions is 0.9 times the length in the initial shape, while the rest length 
of the other two groups of vertical side strings varies from 0.5 to 1.1 
times the length in the initial shape. The equilibrium configuration 
calculated by the form-finding method is shown in Fig. 26. 

6. Conclusions 

During the past few decades, pure bar-string network tensegrity has 
shown its great strength in designing efficient structures in many as-
pects. However, to embrace a much more general problem of system 
design using the tensegrity paradigm, rigid bodies must be included. 

Aiming at extending the ability to analyze rigid body tensegrities with 
analytical tools, this paper formulates the nonlinear equilibrium equa-
tion of the rigid body tensegrity in an explicit form in terms of the 
minimal coordinate. To get the insight of each structure member, we 
derived its equivalent form, which is a linear equation in terms of the 
force vector. Then, we also provide the compatibility equation and 
tangent stiffness matrix of the system for stability analysis. Finally, an 
efficient form-finding method of the rigid body tensegrity is given based 
on the equilibrium and stiffness equations. In the proposed form-finding 
method, a modified tangent stiffness matrix and line search algorithm 
are used to guarantee the result to fast converge to a stable equilibrium 
configuration. It is also shown that the nonlinear equilibrium equations 
of the general tensegrity degenerate to the ones of the traditional ten-
segrity without rigid bodies. Four numerical examples are given to prove 
the accuracy and efficiency of the developed principles. Results show 
that the developed principles can deal with form-finding from a non- 
equilibrium state, find the prestress and mechanism modes, and 
conduct stiffness studies. 
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Appendix 

Derivation of the cable acceleration. 
From Eq.(16), the i th cable’s velocity is: 

l̇i =
hT

i

li
ḣi = hT

ni
ḣi, (92) 

where hni =
hi
li 

is the i th cable’s unit vector. The i th cable’s acceleration is: 

l̈i = ḣ
T
ni

ḣi + hT
ni

ḧi. (93) 

ḣni is the time derivative of the i th cable’s unit vector, which can be derived as: 

ḣni =
ḣili − hT

ni
ḣihi

l2
i

=

(
I3 − hT

ni
hni

)

li
ḣi =

Phni

li
ḣi, (94) 

where Phni = I3 − hni h
T
ni
∈ R3×3 is a symmetric matrix. Therefore, using Eqs.(43), (14), and (94), the first term of Eq.(93) can be rewritten as: 

ḣ
T
ni

ḣi = ḣ
T
i
PT

hni

li
ḣi = U̇T GT ( CT

i ⊗ I3
)Phni

li
(Ci ⊗ I3)GU̇. (95) 

The acceleration of the k th node on the j th rigid body is: 

n̈qjk = n̈cj + ω̇j × rjk + ωj ×
(
ωj × rjk

)
. (96) 
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According to Eqs.(9) and (14), the second term of Eq.(93) is: 

hT
ni

ḧi = hT
ni
(Ci ⊗ I3)n̈ = hT

ni
(Ci ⊗ I3)

(

Ena n̈a +
∑m

j=1

∑zi

k=1
Enqjk n̈qjk

)

. (97) 

Substitute Eq.(96) into the second term of Eq.(97), we have: 

hT
ni
(Ci ⊗ I3)Enqjk n̈qjk = zT

ijk

[
I3

(
− rjk

)× ]

⎡

⎣ n̈cj
ω̇j

⎤

⎦+
[

ṅT
cj ωT

j

]
[

03×3 03×3

03×3 z×ijkr×jk

][
ṅcj
ωj

]

= zT
ijk

[
I3

(
− rjk

)× Bj
]
Üj + U̇T

j

[
0 0
0 BT

j z×ijkr×jkBj

]

U̇j

= hT
ni
(Ci ⊗ I3)Enqjk GjkET

UjÜ + U̇T EUj

[
0 0
0 BT

j z×ijkr×jkBj

]

ET
UjU̇, (98) 

where zijk is: 

zijk =
(

hT
ni
(Ci ⊗ I3)Enqjk

)T
. (99) 

Substitute Eq.(98) into Eq.(97), hT
ni

ḧi can be rewritten explicitly with U̇ and Ü: 

hT
ni

ḧi = hT
ni
(Ci ⊗ I3)

(

Ena ET
Ua

+
∑m

j=1

∑zi

k=1
Enqjk GjkET

Uj

)

Ü +
∑m

j=1

∑zi

k=1
U̇T EUj

[
0 0
0 BT

j z×ijkr×jkBj

]

ET
UjU̇ = Bri Ü + U̇T FiU̇, (100) 

where Fi ∈ RnU×nU is: 

Fi =
∑m

j=1

∑zi

k=1
EUj

[
0 0
0 BT

j z×ijkr×jkBj

]

ET
Uj. (101) 

With the Eqs.(94)-(101), Eq.(93) can be rewritten as: 

l̈i = BriÜ + U̇T
(

GT ( CT
i ⊗ I3

)Phni

li
(Ci ⊗ I3)G + Fi

)

U̇. (102) 

Compare Eq.(76) with Eq.(102), the matrix Ωi is: 

Ωi = GT ( CT
i ⊗ I3

)Phni

li
(Ci ⊗ I3)G + Fi. (103)  
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