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Bifurcation of equilibrium positions for
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We conducted a systematic numerical investigation of spherical, prolate and oblate
particles in an inertial shear flow between two parallel walls, using smoothed particle
hydrodynamics (SPH). It was previously shown that above a critical Reynolds number,
spherical particles experience a supercritical pitchfork bifurcation of the equilibrium
position in shear flow between two parallel walls, namely that the central equilibrium
position becomes unstable, leading to the emergence of two new off-centre stable positions
(Fox et al., J. Fluid Mech., vol. 915, 2021). This phenomenon was unexpected given the
symmetry of the system. In addition to confirming this finding, we found, surprisingly,
that ellipsoidal particles can also return to the centre position from the off-centre positions
when the particle Reynolds number is further increased, while spherical particles become
unstable under this increased Reynolds number. By utilizing both SPH and the finite
element method for flow visualization, we explained the underlining mechanism of
this reverse of bifurcation by altered streamwise vorticity and symmetry breaking of
pressure. Furthermore, we expanded our investigation to include asymmetric particles,
a novel aspect that had not been previously modelled, and we observed similar trends in
particle dynamics for both symmetric and asymmetric ellipsoidal particles. While further
validation through laboratory experiments is necessary, our research paves the road for
development of new focusing and separation methods for shaped particles.
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1. Introduction

The phenomenon of inertial migration in microfluidic systems has gained significant
attention since its initial observation in circular pipes by Segre & Silberberg (1962).
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Understanding the fundamental hydrodynamic forces acting on moving particles has
been a central topic in fluid mechanics. These forces can be broadly classified into drag
forces, which act parallel to the relative motion of the body, and lift forces, which act
perpendicular to it. In the context of confined microchannels, the primary lift forces
driving particle migration across streamlines are the shear-gradient lift force and the
wall-induced lift force (Zhou & Papautsky 2013; Amini, Lee & Di Carlo 2014; Martel
& Toner 2014; Zhang et al. 2016). Additionally, the velocity difference between the
particle and the surrounding fluid results in the Saffman lift (Saffman 1965), while the
difference in angular velocity leads to the Magnus effect (Rubinow & Keller 1961). These
forces act simultaneously on a moving particle within a channel, with the shear-gradient
and wall-induced lift forces typically dominating the migration process, particularly for
particles that are small relative to the channel size (Asmolov 1999).

To gain a better understanding of the fundamental mechanism of inertial lift, previous
research has focused on analytically investigating the near-wall hydrodynamic forces
(Cherukat & McLaughlin 1994; Asmolov 1999; Ekanayake et al. 2020). Asymptotic
theories are particularly applicable when the particle Reynolds number (Rep) is less than
one (Rep = (Ga2)/ν, where G = (2Vwall)/H represents the velocity gradient of the shear,
with Vwall being the velocity of the walls at distance H, a the particle radius and ν

the kinematic viscosity of the fluid). In this regime, particles experience the competing
effect of the shear-gradient force and the wall-repulsive force, as described by Ho &
Leal (1974) and Vasseur & Cox (1977). Additional investigations of lift force profiles
have also been conducted for torque-free spheres (Cox & Brenner 1968; Ho & Leal 1974;
Vasseur & Cox 1976; Schonberg & Hinch 1989), and more recently also in pulsatile flows
(Fox 2021; Vishwanathan & Juarez 2021). Furthermore, Cherukat et al. experimentally
investigated the shear-induced inertial migration of rigid negatively buoyant spheres using
a homogeneous shear flow (Cherukat, McLaughlin & Graham 1994).

In general, when Rep > 1, numerical methods are often preferred over asymptotic
theories, which are only valid under specific flow conditions. For higher values of Rep in
unbounded flows, various phenomena have been observed, including streamwise vorticity
mechanisms. One such phenomenon is the Lighthill–Auton lift (Lighthill 1956, 1957), a
shear-induced lift force caused by a pair of streamwise counter-rotating vortices formed
in the wake of the sphere due to inviscid vorticity tilting by ambient shear. Notably, the
direction of Lighthill–Auton lift is identical to that of the Saffman lift (Auton 1987).
However, at higher Reynolds number, viscous effects induce in the vicinity of the sphere
a second streamwise vorticity field, the direction of which is antiparallel to the one due to
the inviscid vortex tilting mechanism and thus weakens the Lighthill–Auton lift, leading
to an inversion of the lift coefficients (Shi & Rzehak 2020; Shi et al. 2021). Kurose &
Komori reported this inversion for a rigid non-rotating sphere (Kurose & Komori 1999),
where positive coefficients indicate a lift force directed towards the low velocity side,
while negative coefficients indicate a force directed towards the high velocity side. Others
conducted numerical simulations in unbounded linear shear flows and reported similar
changes in the lift force coefficient sign (Lee & Wilczak 2000; Bagchi & Balachandar
2002a; Kim 2006; Hölzer & Sommerfeld 2009; Homann, Bec & Grauer 2013). Additional
numerical studies in an unbounded flow configuration can be found in the literature
for both rigid spheres and spherical bubbles (see Kim, Choi & Choi 2005; Bluemink
et al. 2008; Sugioka & Komori 2009; Santarelli & Fröhlich 2015, 2016), but they do not
explore higher Re. Furthermore, numerical studies focusing on near-wall configurations
are quite limited in inertia-dominated regimes, particularly for arbitrarily translating and
freely rotating spheres, and practically absent for non-spherical particles. To the best of
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our knowledge, only a few studies have investigated near-wall dynamics in a shear flow,
including works by Ekanayake et al. (2020), Ekanayake, Berry & Harvie (2021), Lee &
Balachandar (2010) and Shi et al. (2021).

Recently, a study on spherical particles by Fox, Schneider & Khair (2021) explored the
inertia-dominated regime at higher Rep values than the previous literature did, specifically
in the range 1 ≤ Rep ≤ 50, using the lattice Boltzmann method (LBM). In their study,
a three-dimensional shear flow was employed to examine spherical particles between
two parallel walls, assuming an incompressible Newtonian fluid. The results revealed the
establishment of stable off-centre equilibria through a pitchfork bifurcation due to the
higher modelled Rep. They demonstrated that above a critical Rep, a supercritical pitchfork
bifurcation occurs, resulting in two off-centre equilibrium positions equidistant from the
centre. This finding was unexpected as the symmetry of the system suggested only one
stable equilibrium position halfway between the two walls. The inertial bifurcation of
equilibrium positions depends on the particle’s confinement ratio and is observed under
steady flow conditions (Fox et al. 2021). The study on spherical particles also investigated
neutrally and non-neutrally buoyant particles, the influence of gravity on the migration
process, and explored how flow cessation and reversal affect the focusing positions.

Confirming this phenomenon could be the first step towards developing a new particle
separation system based on the bifurcation of the equilibrium positions due to inertial
effects. Simple shear flows, which can be easily obtained experimentally using a sliding
plate rheometer or a parallel band apparatus, play a crucial role in this development
(Taylor 1934; Rust & Manga 2002). Anand & Subramanian (2023) investigated this
problem analytically, building upon the work of Fox et al. (2021), using a point–particle
approximation. They demonstrated that the bifurcation threshold in planar Couette flow,
for both a circular cylinder and a sphere, corresponds to a critical channel Reynolds
number (Rec) rather than Rep. They showed that a pair of stable off-centre positions
appears when Rec > 148 (110) for a sphere (a circular cylinder) under the assumption
of a small Rep.

Previous research on inertial migration in microfluidic systems has mainly focused
on spherical particles, and investigations regarding shaped particles are limited (Tohme,
Magaud & Baldas 2021). Only in recent years a few devices have emerged for shape-based
particle separation (Li et al. 2017; Behdani et al. 2018; Feng et al. 2020; Yuan et al.
2021; Zhang et al. 2022). The lack of knowledge in this area is a significant hindrance
to the development of shape-based separation tools, which rely solely on the distinct
morphologies of biological particles such as cancer cells and bacteria. Additionally, the
study of inertial lift forces has primarily focused on confined Poiseuille channel flows,
while the analysis of inertial lift forces in Couette-type flows remains surprisingly limited
(Fox et al. 2021).

In this work, we conducted numerical simulations to explore the inertial dynamics
of finite-size particles with various shapes. We investigated a wider range of Rep and,
in addition to the pitchfork bifurcation of equilibrium positions observed for spheres
in the study by Fox et al. (2021) for 15 < Rep < 50, we observed that ellipsoidal
particles migrate back towards the central equilibrium position for Rep > 50. Furthermore,
in our recent study (Lauricella et al. 2022), we examined the inertial migration
dynamics of prolate particles in a straight rectangular channel using smoothed particle
hydrodynamics (SPH) at moderate Re. In a fully confined channel, only the top and bottom
face-centre focusing positions are possible, and a prolate particle can exhibit tumbling
or logrolling behaviour, depending on its initial position, alignment and confinement
ratio. Building upon the same numerical framework, we now investigate how the inertial
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dynamics change when the flow is confined by two parallel walls instead. Initially, we
employed SPH to validate the LBM calculations conducted on spherical particles with
the unexpected off-centre positions. Expanding upon the previous work by Fox et al.
(2021) on spheres, we aimed to examine how the distinctive off-centre positions vary
concerning particle size, shape, orientation and flow conditions. Furthermore, we sought
to explore higher Re than those considered in previous studies of simplified inertial flows
(see Ekanayake et al. 2020; Feng et al. 2020; Fox, Schneider & Khair 2020; Fox et al.
2021). Remarkably, we discovered, for the first time, that elliptical particles can exhibit a
reversal in behaviour at even larger Rep (up to Rep = 100, corresponding to Rec = 1250),
returning to a stable position at the centre. This is in contrast to the instability typically
observed for perfectly spherical particles. We demonstrated that the initial location of
the particle plays a crucial role in determining the final equilibrium position at higher
values of Rep, and this behaviour differs between prolate and oblate particles. Asymmetric
particles exhibited more complex and less predictable dynamics. It is important to note that
all these cases involved steady flows, as unsteadiness arises for Rep > 270, as previously
reported (see Johnson & Patel 1999). To further confirm this unprecedented result, finite
element method (FEM) simulations were conducted, providing additional insights into the
underlying physics based on the surrounding flow fields.

The paper is structured as follows. Section 2 provides a detailed description of our
SPH set-up and FEM model. In the initial part of § 3 (the results section), we present the
validation of these numerical methods. We then proceed to discuss the dynamics of prolate
particles, exploring their behaviour at high Re and examining the influence of various
parameters, including particle orientation, shape asymmetry, Re and initial position. The
latter part of the results section focuses on a similar analysis conducted for oblate particles.
Finally, in § 4, we summarize the key findings of our study and provide an outlook on future
research directions.

2. Methods

2.1. The SPH model
In our study, we utilized the weakly compressible SPH formulation (Gingold &
Monaghan 1977) to solve the same boundary value problem as the previous computational
work conducted in Fox et al. (2021). The SPH simulations involve discretizing the
Navier–Stokes equations for Lagrangian particles, which represent the computational
particles and are used to track variables such as position, density, velocity and energy.
These variables are interpolated using a kernel function that operates over a smoothing
length h. Only the particles within the h-neighbourhood contribute to the calculation of
resulting quantities. In this work, we employed the Lucy kernel, as we did in our previous
study (Lauricella et al. 2022).

To enforce non-penetration and non-slip boundary conditions on the wall and rigid
sphere surfaces, we employed a method that extrapolates the velocity to the wall particles
based on their distances to the boundary, guaranteeing proper interactions. Conservation
of momentum is ensured through pairwise interactions between SPH particles, and
viscous forces are incorporated using Morris’ formula (Morris, Fox & Zhu 1997).
Particle positions and velocities are computed using a velocity Verlet algorithm. The
SPH method was implemented using the molecular dynamics code LAMMPS (large-scale
atomic/molecular massively parallel simulator) (Thompson et al. 2022), with an adapted
version of the SPH-USER package (Ganzenmüller et al. 2011).
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Figure 1. Schematic of a particle between two parallel walls in the SPH model. (a) The top and bottom walls
move in opposite directions with velocities Vwall(t) and −Vwall(t), and a three-dimensional linear shear gradient
is obtained. The walls are infinite in the x and y direction. The origin of the system is halfway between the walls,
whose distance spans from z = −50 µm to z = +50 µm. (b) Different initial alignments were investigated in
the present study. We tested how the initial orientation affects the final rotational behaviour of the particles.
For simplicity, only a prolate particle is reported in the schematic, but the same initial orientations have been
used also for oblate spheroids and asymmetric particles.

Regarding the SPH simulation set-up, we aimed to replicate the same three-dimensional
inertial shear flow that was previously modelled using LBM by Fox et al. (2021). The
SPH particles were arranged in a regular lattice within an orthogonal box, with specific
regions designated to model the walls and spheroidal particles to be simulated. Periodic
boundary conditions were applied in the x and y directions. The size of the simulation
box can influence the results, and based on the previous work (Fox et al. 2021), it was
determined that a box with an aspect ratio (AR) of 2 (i.e. the ratio of the box length in
the x direction to that in the y/z directions, while the y and z dimensions are the same)
yielded the best accuracy for LBM. Consequently, we chose to use a box with an AR of 2,
resulting in dimensions of 200 µm × 100 µm × 100 µm. Notably, in our system, the two
parallel walls are considered infinite in the x and y directions, and they are separated by
a distance of H = 100 µm in the z direction. Hence, we identified the transverse position
of the particles along the z direction, which is where the stable and unstable equilibrium
positions are located. In other words, the y and z directions are inverted compared with the
LBM model by Fox et al. (2021). Figure 1(a) illustrates a schematic of the system modelled
using SPH. The reference system is set such that the top wall is located at z = +50 µm,
the bottom wall at z = −50 µm and z = 0 µm represents the central position.

Throughout our investigation, we tested different initial alignments of the particles,
which are depicted in figure 1(b). In our simulations, the particle is released at y = 0,
and the confinement ratio of the particle, denoted as K, is defined as K = a/H, where a
represents the particle’s largest radius, and H is the distance between the parallel walls.
To accurately match Rep, we adjusted the velocity gradient of the fluid, denoted as G.
The velocity gradient is related to the velocity of the wall, Vwall(t), and is given by the
expression G = (2Vwall(t))/H. By tuning the velocity of the moving walls, we can achieve
the desired G value, which is then used to compute Rep, using the formula Rep = (Ga2)/ν.
In this context, ν denotes the kinematic viscosity of the fluid, which we have chosen to be
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1 mm2 s−1. This value aligns with the viscosity commonly encountered in inertial particle
focusing experiments, such as those conducted with water.

In the LBM formulation employed by Fox et al. (2021), the fluid is assumed to be
Newtonian and incompressible. In our SPH formulation, the compressibility of the fluid is
controlled by the speed of sound. Ideally, for an incompressible fluid, the speed of sound
should be infinite. However, in our weakly compressible SPH formulation, we set the
speed of sound to ensure flow compressibility within 3 %. This value strikes a balance
between computational efficiency and obtaining accurate results, as demonstrated in the
validation section of our study. Furthermore, the fluid density is set to the density of water
at ambient temperature. During the simulations, the position of the particle’s centre of
mass is recorded in a text file, along with its angular and linear velocity. To visualize
and analyse the results, we employ VMD (visual molecular dynamics) (Humphrey, Dalke
& Schulten 1996), which is a software tool commonly used for visualizing molecular
systems.

2.2. The FEM model
For the FEM simulations, we used the COMSOL Multiphysics software package
(COMSOL, Inc., Burlington, MA). Unlike SPH, where transient particle trajectories are
obtained, in the FEM method, only the final stable equilibrium position of the particles was
calculated. To obtain force curves along the z direction in FEM simulations, we employed
the flow at specific particle position (FSPP) approach (Bazaz et al. 2020). In this approach,
the particle is treated as a ‘void’ in the three-dimensional fluid domain, and it is positioned
at various vertical positions between the bottom wall and the centreline (since the system
exhibits symmetry, only half the distance between the parallel walls needs to be studied).
The full Navier–Stokes equations are then solved, and the force on the particle is calculated
by integrating the traction over the particle surface. The validity of this approach has been
demonstrated by us (Naderi et al. 2022) and others (Di Carlo et al. 2009; Raoufi et al.
2019). The independence of results on the selected box length and width was confirmed
for the highest Rep used in the simulations.

Due to the steady-state nature of the FSPP approach, it is only applicable when the
particle (whether symmetric prolate or oblate) is rotating about its symmetric axis, known
as ‘logrolling motion’. To generate flow in the simulations, the moving wall boundary
condition is applied to the parallel walls with the values (UW − UP) and (−UW − UP),
where UW and UP represent the velocities of the walls and the particle, respectively,
matching the velocity Vwall in our SPH set-up. This boundary condition captures both the
sliding movement of the wall and the translational velocity of the particles. The rotation
of the particle is modelled by directly applying a rotational velocity about the y axis on
the particle surface. As we only consider cases where the particle undergoes logrolling
motion, rotation about the x axis and z axis are manually set to zero. To account for the
infinite length and width of the parallel walls, periodic flow conditions with �P = 0 are
applied in the x and y directions. The domain is discretized using 1.5 × 106 tetrahedral
mesh elements to accurately represent the geometry and flow behaviour.

3. Results and discussion

3.1. Validation
To validate the accuracy of our SPH model in capturing the inertial bifurcation
phenomenon, we conducted various validation tests. Previously, we successfully employed
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Figure 2. The SPH validation of the migration trajectory of spherical particles with K = 0.2 released at z0 =
−0.1 and z0 = −0.25. The transverse position was normalized as z0 = z/H and the time as t0 = tG, with G
being the velocity gradient. The spheres at lower Rep migrated to the centre while stable off-centre positions
were present at higher values of Rep. The results agreed with the one obtained with LBM presented in Fox
et al. (2021), reported in the figure with dotted lines.

SPH to model spherical particles in inertial flows (Zhou, Peng & Papautsky 2020) as well
as ellipsoidal particles (Lauricella et al. 2022). In our latest work on shaped particles
(Lauricella et al. 2022), we validated the SPH model against Jeffery’s theory (Jeffery
1922). By comparing the period of rotation of prolate particles with the analytical solution
from Jeffery’s theory, we confirmed that the SPH model accurately captures the dynamics
of ellipsoidal particles in a channel flow. Furthermore, we validated the SPH modelling by
comparing it with microfluidic experiments on prolate particles and computational studies
on oblate particles.

In the present study, we applied and validated the same methodology to systematically
investigate prolate and oblate ellipsoidal particles, including asymmetric ellipsoids, in a
simple shear flow between two parallel walls. The occurrence of the inertial bifurcation
strongly depends on the effect of inertia. To validate our model, we compared it with
the computational results obtained by Fox et al. (2021) for spherical particles. They
had previously validated their LBM code against perturbation theory. We replicated the
migration trajectories of a freely suspended neutrally buoyant sphere with a confinement
ratio K = 0.2, corresponding to a sphere with a radius of 20 µm in our SPH model.
The sphere was released at different transverse positions, and we tested various Rep. For
consistency with prior research, we normalized the transverse position z of the particles by
dividing it by the wall distance H. The dimensionless quantity to which we will henceforth
refer is denoted as z0. Specifically, the sphere was released at the transverse positions
z0 = −0.1 and z0 = −0.25, which are the same chosen in Fox et al. (2021). We assumed
that a sphere starting in positions with z0 > 0, mirrored with respect to the centreline,
would follow the same trajectory due to the system’s symmetry (Fox et al. 2021). Overall,
the SPH results showed good agreement with the trajectories reported by Fox et al. using
LBM (figure 2).

At Rep = 3, we observed that there is only one stable equilibrium position at the
centreline H = 0. Regardless of the initial transverse location, the spheres eventually
reached this central position. However, at Rep = 10, we did not observe any off-centre
positions, unlike the LBM simulation. Instead, the particles migrated towards the
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Figure 3. A spherical particle with K = 0.2 at Rep = 30 under flow cessation. The vertical dashed line
represents the moment the velocity of the moving walls is set to zero. After a transient phase, the particle
reached a new off-centre equilibrium position after the flow had totally ceased.

central position. To investigate further, we tested Rep = 15 and found an off-centre stable
position at z0 = −0.13, which is very close the results reported by Fox et al. (2021) for
Rep = 10. Similarly, good agreement was observed at Rep = 30, where the sphere focused
at approximately z0 = −0.24, matching the off-centre position obtained from LBM. Some
differences were observed at the beginning of the migration path, which we attribute to the
incompressible fluid modelled with LBM, while our SPH formulation allows for a small
degree of compressibility. The inherent difference in compressibility limited the possibility
of achieving a perfect match for the entire particle trajectory.

We also conducted tests under flow cessation to observe the behaviour of particles as
the flow is gradually reduced and eventually stopped within a given time interval �t. As
the flow decreased, the particle experienced lower values of Rep, causing the equilibrium
position to gradually approach the centre of the channel. In our analysis, we focused on
the case of �t = 0, where we abruptly stopped the motion of the parallel walls when
the particle had already reached a stable off-centre position. In this scenario, the particle
did not have enough time to reach the centreline but was instead driven inward to a new
stable off-centre position until the flow had completely ceased. For instance, Fox et al.
(2021) observed that for Rep = 10, the transverse off-centre position shifted 3 µm towards
the centre of the channel within a �t = 0 interval. We observed a similar behaviour for
Rep = 30, where a sphere that was initially focused on the off-centre position z0 = −0.24
shifted to a new stable equilibrium position of z0 = −0.18 after the flow had ceased
(figure 3). Overall, our method successfully captured the predicted supercritical pitchfork
bifurcation for a neutrally buoyant sphere in a time-dependent inertial shear flow. This
finding confirmed the presence of an inertial bifurcation of equilibrium positions for
spherical particles, as previously observed by Fox et al. using LBM.

3.2. Prolate particles
We demonstrated the presence of the supercritical pitchfork bifurcation for prolate
particles and investigated its dependence on Re, particle dimensions and particle
orientation. The particle trajectory was shown as its transverse position plotted against
computational time. To maintain consistency with the validation section, we used
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Figure 4. Symmetric prolate particles with K = 0.2 released at z0 = −0.1 and z0 = −0.25 in the transverse
position. At Rep = 30, the stable off-centre position was dependent on the initial particle orientation (indicated
in parentheses in the plot legend), but not on the initial location. Logrolling particles focused closer to the
bottom wall with respect to tumbling particles.

non-dimensional quantities by dividing the transverse position z by H and multiplying
the time by the velocity gradient G, resulting in z0 = z/H and t0 = tG.

3.2.1. Effect of Re and initial position
In the first place, we used a prolate particle of AR 2 : 1 : 1 (AR 2). We set its dimensions to
40 µm × 20 µm × 20 µm, corresponding to the same confinement ratio K = 0.2 (defined
as the largest radius a = 20 µm divided by the distance of the parallel walls, H = 100 µm)
as the spherical particle used in the validation section. Initially, we examined the presence
of off-centre positions for moderate values of the Rep. For Rep = 3, a prolate particle
migrated towards the single stable equilibrium position at H = 0, which corresponds to
the centre position. At Rep = 10, a prolate particle released at z0 = −0.1 remained in the
same position, representing a stable equilibrium point.

Next, we increased to Rep = 30 and investigated the influence of the initial alignment
and location of the particle on the focusing position. Figure 4 demonstrates that the
initial transverse position of the particle did not affect the final equilibrium. Whether the
prolate particle was released at z0 = −0.1 or z0 = −0.25, it occupied the same stable
off-centre position. However, the initial alignment of the particle (horizontal, vertical
or inclined) did impact the focusing position at Rep = 30. In figure 4, simulations were
concluded at different times for computational convenience. Specifically, the simulation
for the horizontally aligned particle ended earlier than the vertically aligned one. This
decision was based on the assumption that the horizontally aligned particle had already
reached a stable equilibrium, leading to the termination of the simulation at that point.

Then, we conducted tests on the same prolate particle at higher values of Rep.
The particles were initially released at a transverse position of z0 = −0.25 with a
horizontal alignment. Upon initiating the flow, the particles maintained their alignment
and orientation, undergoing logrolling motion. The equilibrium positions were found
to be stable and increasingly distant from the centre as Rep increased. Specifically, we
observed a focusing position of z0 = −0.264 for Rep = 30, z0 = −0.31 for Rep = 50
and z0 = −0.33 for Rep = 70 (figure 5a). Notably, for Rep = 30, the off-centre position

984 A47-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.152


G. Lauricella, M.M. Naderi, J. Zhou, I. Papautsky and Z. Peng

–0.40
0 200 400 600 800

t0
1000 1200 1400 1600 –0.35 –0.30 –0.25 –0.20 –0.15 –0.10 –0.05 0

z
–0.35

–0.30

–0.25

–0.20
z0

z0

f0

–0.15

–0.10

–0.05

 0

3.0

0.15

–0.15

–0.30
–0.20 –0.15 –0.10

0

2.5

2.0

1.5

Rep = 30
Rep = 50
Rep = 70

Rep = 80

Rep = 90

Rep = 100

Rep = 30
Rep = 50
Rep = 70

Rep = 80
Rep = 90

Rep = 100
1.0

0.5

0

–0.5

y

(b)(a)

Figure 5. (a) The behaviour of symmetric prolate particles with K = 0.2 undergoing logrolling motion
at moderate and high Re is depicted in this figure. As the Rep increased, the off-centre positions moved
progressively farther from the centre. However, for Rep = 90 this trend was reversed, and the particle migrated
towards the centre position, irrespective of the initial location. The 70 < Rep < 90 range was found to be
a transition region where there exist multistable off-centre positions closer to the centre. All the particles
exhibited logrolling motion and had been released with a horizontal alignment, as indicated in the box on
the right-hand side of the figure. (b) Force curves obtained from FEM simulations. Positive (negative) values
indicate a centre-directed (wall-directed) force. Stable (unstable) focusing positions are the locations where the
force curve intersects with the f0 = 0 dashed line with a negative (positive) slope. Results are shown only for
the lower half of the distance between the walls due to symmetry.

was similar (slightly farther away from the centre) compared with a sphere with the
same confinement ratio, which stabilized at z0 = −0.24. Interestingly, we identified a
transitional range between Rep = 70 and 90, where the particle experiences multiple
stable off-centre positions that are closer to the centre. Then, for Rep = 90, the trend was
completely reversed and the prolate particle migrated to the centre. After a small overshoot
past the z midline, the particle eventually stabilized at the centre position with a logrolling
motion. This behaviour had not been observed in the previous work, as the range of Rep
was below 50. Since a final steady logrolling motion was predicted using SPH, we were
able to apply FEM to confirm this reversal in the bifurcation of the equilibrium location at
high Re. The FEM simulations also confirmed the presence of stable off-centre positions,
with slight variations of a few microns compared with the SPH results. The FEM results
are presented in the form of force curves along the z direction (figure 5b). The curves
represent the non-dimensional force f0 = F/(U2

w ∗ (d/2)4/H2) exerted on a neutrally
buoyant logrolling prolate moving freely at a specified z0 position, with positive (negative)
values indicating a centre-directed (wall-directed) force. Hence, stable (unstable) focusing
positions are the locations where the force curve intersects with the f0 = 0 dashed line with
a negative (positive) slope. The results are shown only for the lower half of the distance
between the walls due to symmetry. Starting from Rep = 30, the force exhibited negative
values in the central regions and positive values near the walls (figure 5b), with a single
crossing of the force curve and the dashed line at z0 = −0.22, representing the stable
off-centre focusing position. Thus, due to symmetry, we observe two symmetric stable
off-centre focusing positions and an unstable saddle point at the centre for Rep = 30, as
reported by (Fox et al. 2021). This trend holds with increasing Rep up to 70, with the
off-centre stable equilibrium positions moving closer to the walls, which is in agreement
with the SPH results. At Rep = 80, the force curve crosses the dashed line with a negative
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Figure 6. The SPH and FEM data points representing the final equilibrium positions z0 of a prolate particle
with K = 0.2 are depicted on a phase diagram that incorporates particle Reynolds numbers (Rep) of 1, 5, 10,
20, 30, 50, 70, 80, 90 and 100. Only FEM simulations were performed for Rep < 30 due to computational cost.
A ‘transition region’ is observed where multiple equilibria coexist, and this phenomenon persists until Rep =
90, beyond which only a singular equilibrium at the centre prevails.

slope at two off-centre points. One closer to the wall at z0 = −0.3 and the other closer
to the centre at z0 = −0.14. Further increase of the Rep up to 90 and 100 shifts the entire
force curve upwards, leading to a only a single crossing with the f0 = 0 dashed line at the
centre (z0 = 0), confirming the findings from our SPH simulations. The phase diagram in
figure 6 illustrates the equilibrium positions reached at the conclusion of the simulation,
dependent on the particle Reynolds number. In this diagram, we have integrated results
from both SPH simulations and FEM. The shaded grey region signifies the transition zone
where multiple stable off-centre positions coexist, as mentioned earlier.

3.2.2. Mechanisms of bifurcation reversal at high Re
Next, we explored the underlying mechanisms of the reversal in the bifurcation of the
equilibrium position.

To the best of our knowledge, the phenomenon of migration back to the centre at higher
Rep has not been previously reported in inertial shear flow. Prior studies on non-bounded
flow conducted under similar flow conditions did not report this particular behaviour.
Kurose & Komori (1999) performed a numerical study on a non-rotating sphere in a linear
shear flow, spanning a wide range of particle Reynolds numbers (1 ≤ Rep ≤ 500). They
observed only one instance of the lift force coefficient changing its sign for Rep > 60.
Other studies have investigated the behaviour of spheres in unbounded flow (Bagchi &
Balachandar 2002a,b), but none of them reported a second reversal in the direction of the
lift force.

Similar observations can be made for studies conducted in bounded flows, which also
do not report the behaviour observed in this study. This can be attributed mainly to the fact
that the investigated Rep were close to unity (Cherukat & McLaughlin 1994). Recently,
Shi et al. explored the flow around a rigid sphere translating in the near-wall region of a
single wall-bounded flow (Shi et al. 2021). In contrast to previous work, they considered
the effect of rotation and explored values of Rep greater than unity. They introduced the
slip Reynolds number, defined as Res = |Urel|d/ν, where |Urel| represents the prescribed
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Figure 7. Non-dimensional streamwise vorticity field, (ω0 = ωH/UW ) in the y–z plane at the upstream
(x = +0.75dx), particle plane (x = 0) and downstream (x = −0.75dx) at Rep = 30 (a–c) and Rep = 100 (d–f ),
respectively. Here, dx is the x component of the prolate diameter undergoing logrolling motion. The colour map
represents streamwise vorticity; arrows show in-plane velocity field.

relative velocity of the particle to the wall (slip velocity), d is the particle diameter and
ν is the kinematic viscosity. However, their investigation only tested a maximum value
of Res = 250, corresponding to Rep ∼ 20 and the reversal of the lift force sign was not
observed in their study.

However, comparable phenomena to what we observed have been reported in pipe flow
studies within moderately high Reynolds number regimes (Matas, Morris & Guazzelli
2004; Shao, Yu & Sun 2008; Matas, Morris & Guazzelli 2009; Nakayama et al. 2019;
Pan, Li & Glowinski 2021). These studies have shown experimentally, numerically
and analytically the existence of three regimes of equilibria for a pipe flow. The
Segré–Silberberg annulus (Segre & Silberberg 1962) was observed to move closer to the
tube walls for Rec up to 700. At 700 > Rec > 900 particles were detected on an inner
annulus as well as the Segré–Silberberg ring. At even higher Rec, particles were focused
only on the inner annulus, indicating that the radial position of the Segré–Silberberg
ring is no longer a stable equilibrium position (Nakayama et al. 2019). Although the
inner annulus equilibrium position never reaches the pipe centreline in those studies, the
overall behaviour resembles that of the shear flow we described earlier. Shao et al. (2008)
attributed this complex particle migration behaviour to the interaction between the flow
and the channel in terms of travelling wave structures (Hof et al. 2004; Kerswell 2005;
Eckhardt et al. 2007; Pringle & Kerswell 2007; Shao et al. 2008), i.e. secondary flows
developed perpendicular to the main flow direction within the particle’s plane, as well as
both upstream and downstream of the particle.

Since both the Lighthill–Auton inviscid lift, and the viscous-effect induced opposite
lift, are related to streamwise vorticity fields (Lighthill 1956, 1957; Auton 1987; Shi &
Rzehak 2020; Shi et al. 2021), we also examine the streamwise vorticity fields at different
particle Re numbers. Figure 7 illustrates the non-dimensional streamwise vorticity, ω0,
at the y–z particle plane (x = 0) and both the upstream (x = +0.75dx) and downstream
(x = −0.75dx) for the case of a prolate located at z0 = −0.2 at Rep = 30 and Rep = 100.
Here, dx denotes the x component of the prolate diameter undergoing logrolling motion.
We chose this location since the prolate experiences the force in opposite directions at
Rep = 30 and Rep = 100 at z0 = −0.2. Therefore, it can showcase the flow structure
evolution responsible for the reversal in the bifurcation. At Rep = 30, which is below the

984 A47-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.152


Ellipsoidal particles in inertial shear flows

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5

Rep = 30

Rep = 100

p0

z0

1.0

0.8

0.6

0.4

0.2

0

y
z

1.0

0.8

0.6

0.4

0.2

1.0

0.8

0.6

0.4

0.2

(c)

y
z

(a)

(b)

Figure 8. Normalized pressure distribution, p0 = p/pmax, in the particle y–z plane for (a) Rep = 30, and
(b) Rep = 100 where pmax is the maximum pressure in the y–z plane. (c) Normalized pressure along the vertical
cut-line through the particle symmetric plane; here, pressure is normalized using the maximum pressure along
the cut line for ease of comparison.

‘transition region’, the vorticity field exhibited nearly symmetric behaviour in the vicinity
of the particle. That is, the fluid flows away from the particle (figure 7b), followed by a
pair of counter-rotating vortices that change rotational direction going from the upstream
to the downstream (figure 7a,c). This is in agreement with the observation of Shao et al.
(2008) in pipe flow. However, above the ‘transition region’ and at Rep = 100, an additional
pair of counter-rotating streamwise vortices is formed at the particle plane, between the
particle and the bottom wall (figure 7e), disrupting the symmetry of the pressure field in
the vicinity of the particle (figure 8). This asymmetry caused higher pressure magnitudes
on the wall side of the particle, ultimately pushing it upwards towards the centre. While,
as reported by Fox et al., at Rep = 10, which is well below the ‘transition region’,
the asymmetry of the flow streamlines around the particle at the off-centre focusing
position produces no net hydrodynamic lift (Fox 2021). In short, we found that the altered
streamwise vorticity field and its associated secondary flow velocity at higher Re leads to
unsymmetrical pressure distribution, which pushes the particle back to the centre.

Finally, in an effort to further explore the phenomenon in one-wall bounded flows, we
attempted to utilize FEM simulations to gain a better understanding of the influence of
the wall. However, our FEM model failed to converge for cases where H � 100 µm at
Rep = 100, preventing us from confirming whether this behaviour is influenced by a single
wall or the presence of two parallel walls. In other words, although we showed the reversal
of the pitchfork bifurcation with the particles going back can occur for two walls, it is
unclear whether this can also occur for a single-wall bounded flow with further increased
Rep, and future investigations are needed.

3.2.3. Effect of particle orientation
In our previous study, we observed that prolate spheroids can undergo different rotational
motions in a straight microchannel (Lauricella et al. 2022), depending on the initial
conditions. The presence of the four walls leads to more complicated dynamics, that allow
a prolate particle to stabilize into a logrolling motion. However, in the existing literature,
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only the tumbling motion had been reported for prolate ellipsoids in inertial flows (Tohme
et al. 2021).

We observed that, even in a two parallel walls configuration, a prolate particle that
was initially horizontally aligned (largest radius aligned with the y direction) experienced
a logrolling rotational motion. If the particle was released with a vertical alignment
(largest radius parallel with the z direction), it maintained a tumbling motion. In both
cases, the particles did not change their rotational motion throughout the simulation. We
observed that the tumbling prolate reached the stable off-centre position z0 = −0.22,
closer to the centre with respect to the same particle that is logrolling, which focused
at z0 = −0.264. This happened for two different starting positions at z0 = −0.1 and
z0 = −0.25. The trajectory of the tumbling prolate presented small oscillations in the
transverse direction, due to the rotational mode which is less stable than the logrolling
behaviour. As can be noticed in figure 4, the time required to reach the stable off-centre
position for a tumbling particle was approximately 30 % longer than for the particle
undergoing a logrolling motion. Furthermore, we tested other alignments, including an
initial ‘inclined’ orientation, by rotating the prolate particle by 15◦ and 45◦, as shown in
figure 9(a). Shortly after this initial condition, the particle vertically aligned in the flow
and underwent a tumbling motion, thereby achieving the same stable off-centre position
as a particle that was vertically aligned from the beginning of the simulation. Therefore,
unless the particle was released with a horizontal orientation, any substantial shift (i.e.
greater than a few degrees) from this position led to a tumbling motion under the flow
conditions described above. A qualitative illustration of this behaviour is shown by plotting
the angular velocities of these particles in figure 9(b–d). Note that although we previously
used ω to indicate the fluid streamwise vorticity, here ω it refers to the angular velocities
of the particle. The components around the x and z axes of the angular velocity of a
tumbling particle that had a perfect vertical alignment were zero. In this case, only the
y-angular velocity ωy was non-zero. A particle with an initial angle exhibited non-zero
components of ωx and ωz until it stabilized on a vertical rotation, as shown in figure 9(b,d).
Concurrently, the value of ωy progressively increased, as shown in figure 9(c). In general,
the angular velocity of tumbling particles was characterized by periodic oscillations, while
it was almost constant for logrolling particles.

Finally, it is important to clarify that in experimental settings, maintaining a perfectly
horizontal orientation is not necessary for preserving logrolling motion. Our observations
suggest that at moderate Reynolds numbers, the logrolling motion remains robust even
with small fluctuations in inclination, typically of the order of a few degrees. However,
an inclination of 15◦ can shift the motion towards tumbling, as illustrated in figure 9 for
Rep = 30. Conversely, at higher Reynolds numbers, the augmented influence of inertia
plays a stabilizing role, allowing the system to endure more substantial oscillations. In
figure 10, the asymmetric prolate particle at Rep = 70 initially exhibited an oscillatory
motion resembling kayaking. Nevertheless, as the trajectory progressed, the particle
smoothly transitioned into a stable logrolling motion, evident in the form of a flat trajectory
line. We also tested a prolate particle inclined by 5◦ at Rep = 100 and it preserved the
logrolling motion.

3.2.4. Effect of shape asymmetry
Finally, we studied the behaviour of an asymmetric prolate particle with a confinement
ratio K = 0.17, similar to the symmetric cases. The creation of asymmetric particles was
initiated at the outset of the simulation by employing LAMMPS-specific commands within
the region category. In particular, the ‘union’ and ‘intersect’ keywords were utilized to
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Figure 9. Symmetric prolate particles with K = 0.2 released with different initial orientations at z0 = −0.1,
with Rep = 30. (a) The trajectory of the prolate particles shows that if the particle has an initial horizontal
alignment, it will keep the same orientation undergoing a logrolling motion, focusing at z0 = −0.264. In all
the other cases, i.e. initial angle or vertical alignment, the final rotational motion and off-centre position will
be the same at z0 = −0.22. (b–d) Angular velocities of the particles around the three axes. Angular velocities
are in units of radians per second.

designate and merge specified particle regions from the initial lattice of SPH particles,
resulting in the generation of customized mesoscopic particles. As illustrated in figure 10,
the particle in question was formed by combining a spherical component of radius 9 µm
with a prolate particle with an AR of 4. We released the particle with a horizontal
alignment at position z0 = −0.1 and tested Rep = 30, 50 and 100. The off-centre positions
were present also for the asymmetric prolate and were similar to the positions achieved
by the symmetric prolate particles. However, the asymmetric shape of these particles
created pronounced oscillations in the trajectory that persisted also after the particle
reached the equilibrium position (figure 10). In addition, the time required to reach the
stable off-centre positions was more than twice the time required for the symmetric
particles, presumably a consequence of the oscillating behaviour that slows down the
overall migration process. One major difference occurred at Rep = 100, where unlike the
symmetric case, the particle did not reach the z midline (H = 0) and instead remained
in the vicinity of z0 = −0.06. Besides the initial horizontal orientation, we also tested
the vertical and inclined orientation. The corresponding results are shown in figure 11.
The tumbling asymmetric prolate took more time to reach a stable off-centre position,
which oscillated around z0 = −0.28. A different trajectory, but the same focusing position
was achieved by the same particle which was released with an initial angle of 45◦, as
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Figure 10. Asymmetric prolate particles with K = 0.17. The particles were released with a horizontal
alignment at z0 = −0.1. For Rep = 30 and Rep = 50 the particles underwent a logrolling motion, and the
trajectories exhibited some bumps due to the irregular oscillatory motion given by the asymmetry. At Rep = 100
the particle was much more stable and underwent a logrolling motion. The particle shape is shown in the inset.

shown in figure 11. The inclination gradually disappeared as the particle travelled in the x
direction. It eventually experienced a tumbling motion and stabilized at z0 = −0.28. This
was also true for a smaller initial angle of 20◦. Overall, we confirmed that even in the
case of asymmetric prolate ellipsoids, logrolling particles reached their stable off-centre
position sooner than the tumbling particles. The time required for the logrolling particles
was approximately 50 % less than that for the tumbling particles of the same size and
shape. We organized the cases we tested for prolate particles and the different parameters
we investigated in table 1.

3.3. Oblate particles
The unique off-centre focusing positions were exhibited also by oblate spheroids.
Regardless of the initial orientation of the oblate particles we tested, they eventually
reached a stable logrolling motion, with the major axis aligned with the vorticity axis.
Unlike Jeffery’s theory, developed for an inertialess fluid, when the effect of inertia is not
negligible, the orbit followed by the particle is reduced to one. In an unbounded simple
shear flow, it was already observed that an oblate particle drifts towards a logrolling motion
(Huang et al. 2012; Mao & Alexeev 2014). The same behaviour applied in the parallel-wall
system we employed in the present investigation.

3.3.1. Effect of Re number and initial position
We modelled an oblate particle with major axes 40 µm × 40 µm × 20 µm in length,
corresponding to a confinement ratio K = 0.2. We identified differences and similarities in
the migration dynamics in comparison with a prolate particle with the same confinement
ratio. The stable off-centre position was z0 = −0.21 for Rep = 30, which is almost the
same as a prolate particle undergoing a tumbling motion at the same Rep. This confirmed
that one key factor in determining the exclusive off-centre positions is the extension
of the particle in the z direction. Then, we increased Rep and noted that for Rep = 50
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Figure 11. Asymmetric prolate particles with K = 0.17. The particles were released with different initial
orientations. In the case of initial vertical alignment or with an angle, it always ended up tumbling, reaching
the same stable off-centre position of z0 = −0.28.

the off-centre position did not change (figure 12), unlike prolate particles for which we
observed two different equilibria at Rep = 30, Rep = 50 and Rep = 100. However, if the
same particle was released closer to the centre at Rep = 50, it reached the centre focusing
position, showing that at higher values of Rep the initial location of the particle is crucial
in determining the final equilibrium position. In addition, at Rep = 60 and 70, the oblate
particle migrated to the centre and stabilized at z0 = 0 regardless of the initial starting
location. For a prolate particle, the same behaviour was observed at Rep = 100, and
off-centre positions still existed at Rep = 70 (figure 5a).

3.3.2. Effect of shape asymmetry
Ultimately, analogous to the approach used for creating the asymmetric prolate particle, we
applied a similar procedure by merging an oblate particle measuring 20 µm × 10 µm ×
10 µm with a prolate particle with an AR of 2 to get the asymmetric oblate spheroid
with K = 0.2 reported in figure 13. We observed that, unlike symmetric oblate particles,
the particles studied in these cases underwent a tumbling motion for a long period of
time, before transitioning to a logrolling motion. We tested three values of Rep, finding
various stable off-centre positions. The particle equilibrated at z0 = −0.25 for Rep = 30,
z0 = −0.3 for Rep = 50 and z0 = −0.32 for Rep = 70. However, for Rep = 30, the stable
off-centre position changed when the particle shifted to a logrolling behaviour. We
observed the shift in the rotational mode only for Rep = 30. We believe that the same
transition can happen also for lower values of Rep, whereas for higher Rep the force
exerted by the fluid on the particle prevents this transition. In fact, asymmetric oblates at
Rep = 50 and Rep = 70 underwent a tumbling motion, without experiencing a transition
in the rotational mode. In addition, as discussed for the asymmetric prolate, the trajectory
was not smooth even for asymmetric oblate spheroids, where slight bumps were present
even when the particle reached a stable position. For this specific case, the oscillations
increased when the particle transitioned from the tumbling to the logrolling motion, at the
lowest Rep tested. A summary of the simulations of oblate particles is provided in table 2.
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K AR Rep Rec IP Initial orientation Final rot. mode Final pos. (z0)

0.2 1.1 100 1250 −0.25 Horizontal L Unstable
0.2 1.3 100 1250 −0.25 Horizontal L Unstable
0.2 1.7 100 1250 −0.25 Horizontal L Unstable
0.2 1.5 100 1250 −0.25 Horizontal L Unstable
0.2 2 3 37.5 −0.1 Vertical T 0
0.2 2 3 37.5 −0.25 Vertical T 0
0.2 2 10 125 −0.1 Horizontal L −0.1
0.2 2 10 125 −0.25 Horizontal L −0.1
0.2 2 30 375 −0.1 Inclined (45◦) T −0.22
0.2 2 30 375 −0.1 Inclined (15◦) T −0.22
0.2 2 30 375 −0.1 Vertical T −0.22
0.2 2 30 375 −0.25 Vertical T −0.22
0.2 2 30 375 −0.1 Horizontal L −0.264
0.2 2 30 375 −0.25 Horizontal L −0.264
0.2 2 50 630 −0.25 Horizontal L −0.31
0.2 2 70 880 −0.25 Horizontal L −0.33
0.2 2 80 1005 −0.1 Horizontal L −0.125
0.2 2 80 1005 −0.25 Horizontal L −0.17
0.2 2 80 1005 −0.35 Horizontal L −0.17
0.2 2 90 1130 −0.1 Horizontal L 0
0.2 2 90 1130 −0.25 Horizontal L 0
0.2 2 100 1250 −0.1 Horizontal L 0
0.2 2 100 1250 −0.1 Inclined (5◦) L 0
0.2 2 100 1250 −0.25 Horizontal L 0
0.2 2 100 1250 −0.35 Horizontal L 0
0.1 2 50 630 −0.1 Horizontal L −0.112
0.3 2 30 375 −0.1 Horizontal L −0.251
0.3 2 50 630 −0.1 Horizontal T Unstable
0.16 2 18.9 375 −0.25 Horizontal L −0.27
0.16 2 44.35 880 −0.25 Horizontal L −0.27
0.25 2 47.63 375 −0.25 Horizontal L −0.26
0.25 2 111.77 880 −0.25 Horizontal L Unstable
0.2 2.5 100 1250 −0.25 Horizontal L 0
0.2 3.5 100 1250 −0.25 Horizontal L 0
0.2 3 100 1250 −0.25 Horizontal L 0
0.2 3 30 375 −0.1 Horizontal L −0.277
0.2 5 30 375 −0.1 Horizontal L −0.103
0.17 asy 30 375 −0.1 Horizontal L (oscillations) −0.23 (average)
0.17 asy 50 630 −0.1 Horizontal L (oscillations) −0.315 (average)
0.17 asy 50 630 −0.1 Vertical L (oscillations) −0.28 (average)
0.17 asy 50 630 −0.1 Inclined (20◦) L (oscillations) −0.28 (average)
0.17 asy 50 630 −0.1 Inclined (45◦) L (oscillations) −0.28 (average)
0.17 asy 100 1250 −0.1 Horizontal L −0.065

Table 1. List of the cases investigated for prolate ellipsoidal particles. The confinement ratio K, particle AR,
Rep, Rec, initial position (IP) initial orientation (refer to figure 1b), final rotational mode (logrolling (L),
tumbling (T)) and final stable equilibrium position are reported. Asymmetric prolate particles are identified
with ‘asy’ in the column of the AR. For these particles, their final motion is oscillating, therefore the stable
focusing position is indicated as ‘average’.

3.4. Effect of particle AR and confinement ratio on the inertial bifurcation
In this section, we present a comparison of prolate and oblate particles with different
dimensions, with the main purpose of elucidating the role of each parameter (confinement
ratio, volume, AR) in determining the final focusing position of the particle. While in the
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Figure 12. Symmetric oblate particles with K = 0.2 The particle top view is reported in the inset. For all the
Rep values, the oblate spheroid underwent a logrolling motion. Different values of Rep yield different off-centre
positions, but with a different trend than prolate ellipsoids. The initial positions were chosen arbitrarily.
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Figure 13. Asymmetric oblate particles with K = 0.2. The vertical dashed line indicates the moment when
the particle at Rep = 30 transitions from a tumbling motion to logrolling. This did not happen for Rep = 50
and Rep = 70. The trajectories showed some oscillations due to the asymmetric shape, shown in the inset.

previous sections, we mainly investigated ellipsoids an AR of 2, here we explored different
ARs and confinement ratios, and also compared ellipsoidal particles with spheres. The
results were organized in order to emphasize the common features presented by particles
with the same behaviour, i.e. the same focusing position and dynamics.

First, we compared spherical, prolate and oblate particles with fixed volumes at two
different Re. For these cases we used Rec, since imposing the same volume on particles
with different shapes leads inevitably to different radii, a, and, as a consequence, to
different Rep (since Rep = (Ga2)/ν). In figure 14, we tested particles with a volume
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K AR Rep Rec IP Initial orientation Final rot. mode Final pos. (z0)

0.126 2 11.9 375 −0.25 Horizontal L −0.24
0.126 2 27.94 880 −0.25 Horizontal L −0.3
0.16 2 18.9 375 −0.25 Horizontal L −0.22
0.16 2 44.34 880 −0.25 Horizontal L −0.29
0.2 2 30 375 −0.10 Horizontal L −0.21
0.2 2 30 375 −0.25 Horizontal L −0.21
0.2 2 50 630 −0.25 Horizontal L 0
0.2 2 50 630 −0.10 Horizontal L −0.21
0.2 2 50 630 −0.35 Horizontal L 0
0.2 2 60 750 −0.25 Horizontal L 0
0.2 2 60 750 −0.35 Horizontal L 0
0.2 2 70 880 −0.15 Horizontal L 0
0.2 2 70 880 −0.25 Horizontal L 0
0.2 2 70 880 −0.35 Horizontal L 0
0.2 asy 30 375 −0.25 Horizontal T −0.22 (average)
0.2 asy 50 630 −0.25 Horizontal L −0.3 (average)
0.2 asy 70 750 −0.25 Horizontal L −0.32 (average)

Table 2. List of the cases investigated for oblate ellipsoidal particles. The asymmetric oblate at Rep = 30
exhibited a tumbling motion with one focusing position and then transitioned into a logrolling motion with a
different off-centre position. All cases showed oscillations for asymmetric particles. The initial position (IP) of
the particle may play a role in determining the final equilibrium position.

V1 = 4189 µm3, V2 = 8377 µm3 and V3 = 16 775 µm3. It can be noticed that V2 is twice
V1 and V3 is twice V2. The results are shown in figure 14 for Rec = 375 and Rec = 880. The
figure also includes the dimension of the semiaxes of each particle, reported in the legend
as (p, q, r), with p being the largest semiaxis. At Rec = 375, the particles exhibited similar
behaviour and there were no noticeable differences for particles with different volumes.
Prolate particles underwent a logrolling motion, therefore the space they occupied in the
transverse position was close to the spherical particles. Oblate particles reached focusing
positions that were closer to the channel centre with respect to prolate and spheres, which
exhibited a similar equilibrium position instead. These differences were more pronounced
as the Rec and/or the volume were increased. These results suggested that the volume of
the particle did not play a significant role in determining the final off-centre position, since
for a fixed volume and fixed Re the shift in the equilibrium position was solely given by the
difference in the vertical extension of the particle, namely its dimension in the transverse
position z. However, this trend was disrupted when the particle was too large, or Re was
too high. For particles with volume V3 at Rec = 880, it can be noticed that the oblate
particle went back to the centre, the prolate particle underwent a tumbling motion and
hit the bottom wall, while the sphere oscillated up and down without reaching a stable
equilibrium.

As shown in figure 15, more cases of prolate particles in various conditions were
compared, to confirm and verify some insights provided by the previous data. Solid lines
correspond to Rep = 50 and dashed lines correspond to Rep = 30. Prolate particles with
an AR of 5 (20 µm, 4 µm, 4 µm) and AR 2 (10 µm, 5 µm, 5 µm) were shown in blue
and red, respectively. Although the AR and volume of the two particles were different,
the focusing position was similar and close to the centreline. This confirmed that the main
factor determining the off-centre position is the dimension of the particle in the transverse
position. In this case, the particles vertical dimension was 4 and 5 µm, respectively.

984 A47-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

15
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.152


Ellipsoidal particles in inertial shear flows

–0.40

–0.35

–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

 0

0 50 100 150 200 250 300 350 400
–0.40

–0.35

–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

 0

0 50 100 150 200 250 300 350 400 450

–0.40

–0.35

–0.3

–0.25

–0.20

–0.15

–0.10

–0.05

 0

0 50 100 150 200 250 300
–0.4

–0.3

–0.2

–0.1

 0

 0.1

 0.2

 0.3

0 100 200 300 400 500 600

–0.40

–0.35

–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

 0

0 20 40 60 80 100 120 140
–0.40

–0.35

–0.30

–0.25

–0.20

–0.15

–0.10

–0.05

 0
S (r = 10)

P (15.8, 7.9, 7.9)

O (12.6, 12.6, 6.3)

S (r = 10)

P (15.8, 7.9, 7.9)

O (12.6, 12.6, 6.3)

S (r = 12.6)

P (20, 10, 10)

O (15.8, 15.8, 7.9)

S (r = 12.6)

P (20, 10, 10)

O (15.8, 15.8, 7.9)

S (r = 15.8)

P (25.2, 12.6, 12.6)

O (20, 10, 10)

S (r = 15.8)

P (25.2, 12.6, 12.6)
O (20, 10, 10)

0 100 200 300 400 500 600

z0

z0

z0

t0 t0

(a) (i) (i)

(ii) (ii)

(iii) (iii)

(b)

V3, Rec = 375 V3, Rec = 880

V2, Rec = 375 V2, Rec = 880

V1, Rec = 375 V1, Rec = 880

Figure 14. Spheres (S), prolate (P) and oblate (O) particles with fixed volumes. Panels (a i–iii) and (b i–iii)
show the cases at Rec = 375 and Rec = 880, respectively; while (a i,b i), (a ii,b ii) and (a iii,b iii) correspond to
a different volume, V1 = 4189 µm3, V2 = 8377 µm3 and V3 = 16 775 µm3, respectively. Also for these cases,
the normalized transverse position z0 = z/H was plotted against the normalized time t0 = tG.

As mentioned before, this trend held until it was reverted when the particle became too
large, and the wall-repulsive force pushed it away from the wall. This can be noticed for the
prolate particle with dimensions (20 µm, 10 µm, 10 µm) and (30 µm, 15 µm, 15 µm) at
Rep = 30, shown with the yellow and magenta dashed lines, respectively. The former was
slightly closer to the bottom wall than the bigger prolate particle. When Rep was increased
to 50, the smaller particle moved even closer to the confining wall, whereas the bigger
particle exhibited an unstable behaviour.
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Figure 15. Prolate particles of different dimensions at Rep = 30 (dashed lines) and 50 (solid lines). The
semiaxes are reported in the legend as (p, q, r), with p being the major semiaxis. It can be noted how the two
main factors in determining the final transverse position z (normalized as z0 = z/H) are Re and the dimension
that the particles occupy in the transverse position.

Overall, we never observed a spherical particle stably going back to the centre at
high Re in this investigation. To gain a better understanding of the difference between
spheres and prolate particles at high Re, we tested prolate particles with different ARs
at Rep = 100. We explored decreasing values of AR approaching 1, corresponding to
a spherical particle. As shown in figure 16(a), for an AR equal or greater than 2 the
particle migrated towards the centre position. As the AR was reduced further, approaching
the one of a sphere, oscillations appeared in the particle trajectories. In these unsteady
cases, the particles reached a stable position and remained there for a given amount of
time, but then they suddenly jumped towards the top wall and moved back and forth
without finding an equilibrium location in the transverse position. This instability occurred
approximately after a time of t0 = 300 (figure 16), and it was not reported in Fox et al.
(2021) probably because the simulation time was not long enough and because they
explored values of Rep < 50. In the attempt to provide an explanation for this behaviour,
we hypothesized that at higher Reynolds numbers perfect spheres or prolates with low
AR oscillate because of the instabilities in the x and z rotations, while the elongated
shape of prolates with high AR stabilize the x and z rotations and oscillations. To test
our hypothesis, we repeated the simulations for the prolate particles with ARs of 1.3
and 1.7, but manually disabled the rotations of the particle around the x and z axes
to test whether the rotational instability is the main cause. As shown in figure 16(b),
although it reduced the instability for prolates with aspect ratio 1.3 and 1.7, the oscillation
still occurs for the spherical particle (AR 1). This showed that additional mechanisms
exist for the oscillation of the sphere, besides the rotational instability. These results
suggested that the AR of the particle might be the key parameter determining whether
the particle returns to the centre, but further investigation needs to be conducted to
clarify the differences between spherical and ellipsoidal particles at higher values of
Rep. In the pipe study by Shao et al. (2008), they showed how particles near the tube
wall undergo oscillatory motion at high Reynolds numbers. As Reynolds number was
increased further more, despite initial stability, particles experience eventual instability,
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Figure 16. (a) Prolate particles with the same dimension in the transverse position but different ARs. When
the AR approached one of the spheres, the particle experienced an unstable dynamic instead of going to the
centre position at Rep = 100. (b) Particles with the x and z rotation artificially disabled in the SPH simulations.

transitioning to oscillatory motion primarily within r = 0.4–0.7. Notably, Shao et al.
highlight the absence of a stable inner equilibrium position at higher Reynolds numbers,
underscoring the challenging and sometimes elusive nature of characterizing oscillations
in these systems.

4. Conclusions

Overall, we observed the existence of lower and upper thresholds in Re values that
determine the behaviour of ellipsoidal particles. Below the first threshold, these particles
exhibit a stable focusing position at the centre (H = 0). As Re exceeds the first threshold,
the particles transition to a pair of stable off-centre positions symmetrically located with
respect to the centreline. Beyond the upper threshold, the particles return to a single
central equilibrium position and experience multistability in certain cases. We explained
the underlining mechanism of this reverse of bifurcation by altered streamwise vorticity
and symmetry breaking of pressure. A summary of the key findings is reported herein.

The off-centre positions were consistently observed for particles of various shapes and
symmetries for Rec < 375. In the case of asymmetric particles, we defined an average
focusing position due to the presence of regular oscillations in the particle trajectory. As
Re increases, the off-centre positions progressively shift closer to the confining walls. The
dominant factor determining particle behaviour is the size of the particle in the transverse
dimension (z axis). For particles with small vertical dimensions, such as the AR 5 prolate
or K = 0.1 prolate (see figure 15), the equilibrium locations are situated near the centre.
As the extension of the particle along the z axis increases, the off-centre position gradually
shifts towards the wall. However, when the particle becomes too large, the trend is reversed,
and the position shifts back towards the centre due to the limited space between the walls.
The particle volume does not significantly impact the off-centre position at a given Rep.

For Rec > 880, the particle dynamics can be influenced by the particle size and AR,
resulting in differences observed among different particle shapes. Spherical particles do
not return stably to the centre but exhibit unstable behaviour instead. The AR may be the
determining factor, as prolate particles with an AR close to unity exhibit the same unstable
behaviour as spheres (see figure 16a). Prolate particles achieve a stable centre position
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only when a logrolling rotational mode is maintained. However, our results indicate that
this is not always the case, as certain conditions can cause the particle to transition into
a tumbling motion and collide with the confining walls. Oblate particles, on the other
hand, tend to return to the centre at a lower Rep than prolate particles, and the initial
position of the particle may influence the final stable focusing position. For both prolate
and oblate particles, we identified a transitional region of the Reynolds number where
multistability exists, namely the particle can reach off-centre equilibrium positions closer
to the z midline, different from the off-centre positions reached at moderate Rep. For
asymmetric particles, the phenomenon becomes more complex and less predictable, but
the general trends observed for symmetric ellipsoidal particles are maintained.

In conclusion, our study revealed that the pitchfork bifurcation of equilibrium positions
for rigid particles in a shear flow between two parallel walls is influenced by multiple
parameters, including particle size, shape, initial configuration and Re, and it can be
reversed. Future investigations should clarify whether this behaviour is caused by the
presence of one or two walls, at high Re. More work is required to elucidate the behaviour
of spherical particles at high Reynolds number. Moreover, it is advisable to explore a
broader range of initial configurations for ellipsoidal particles, including initial position
and alignment, to gain a more accurate understanding of the existence of multiple
stable equilibria within the transitional zones of Rep. Additionally, the examination
of non-axisymmetric particles would be interesting to determine whether they exhibit
dynamics similar to those we observed in fore–aft asymmetric particles. These findings
open up opportunities for future research to explore the potential development of novel
separation techniques and devices.
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